Poiseuille flow of molecular fluids
نویسندگان
چکیده
We examine a generalised Navier-Stokes theory applicable to fluids composed of non-spherical molecules. We compare the theoretical predictions for flow velocity and viscosity with results obtained from nonequilibrium molecular dynamics (NEMD) simulations of a fluid undergoing gravity fed flow down a rectangular channel. We study two different fluids: one composed of spherical particles and the other composed of uniaxial molecules at two different channel widths, W---5.1 and 10.2 molecular diameters. Our results show that aside from boundary effects due to the roughness of the atomistic walls, the generalised Navier-Stokes theory gives a reasonable qualitative account of a fluid composed of molecules that possess spin, even in a channel that is only 10.2 molecular diameters wide. In the simple fluid case, we find that classical behaviour is approached at this same channel width ( W = 10.2) but in the W =5.1 channel, Navier-Stokes theory begins to break down. For both channel widths we find that the assumption of a constant shear viscosity is incorrect and, further, that the viscosity in the narrow channel of 5.1 molecular diameters is probably non-local.
منابع مشابه
Study Effect of Deformation Nanochannel Wall Roughness on The Water-Copper Nano-Fluids Poiseuille Flow Behavior
In the nanochannel flow behavior with respect to expand their applications in modern systems is of utmost importance. According to the results obtained in this study, the condition of nonslip on the wall of the nanochannel is not acceptable because in the nano dimensions, slip depends on different parameters including surface roughness. In this study, keeping the side area roughness, deformatio...
متن کاملNon-Equilibruim Molecular Dynamics Simulation of Poiseuille Flow in a Nanochannel
The numerical simulation of a Poiseuille flow in a narrow channel using the molecular dynamics simulation (MDS) is performed. Poiseuille flow of liquid Argon in a nanochannel is simulated by embedding the fluid particles in a uniform force field. Density, velocity and Temperature profiles across the channel are investigated. When particles will be inserted into the flow, it is expected that the...
متن کاملEffects of different atomistic water models on the velocity profile and density number of Poiseuille flow in a nano-channel: Molecular Dynamic Simulation
In the current study, five different atomistic water models (AWMs) are implemented, In order to investigate the impact of AWMs treatment on the water velocity profile and density number. For this purpose, Molecular dynamics simulation (MDS) of Poiseuille flow in a nano-channel is conducted. Considered AWMs are SPC/E, TIP3P, TIP4P, TIP4PFQ and TIP5P. To assessment of the ability of each model in...
متن کاملBurnett description for plane Poiseuille flow.
Two recent works have shown that at small Knudsen number (K) the pressure and temperature profiles in plane Poiseuille flow exhibit a different qualitative behavior from the profiles obtained by the Navier-Stokes equations. Tij and Santos [J. Stat. Phys. 76, 1399 (1994)] used the Bhatnagar-Gross-Kook model to show that the temperature profile is bimodal and the pressure profile is nonconstant. ...
متن کاملNanoscale fluid flows in the vicinity of patterned surfaces.
Molecular dynamics simulations of dense and rarefied fluids comprising small chain molecules in chemically patterned nanochannels predict a novel switching from Poiseuille to plug flow along the channel. We also demonstrate behavior akin to the lotus effect for a nanodrop on a chemically patterned substrate. Our results show that one can control and exploit the behavior of fluids at the nanosca...
متن کاملNavier-Stokes Flow in Cylindrical Elastic Tubes
Analytical expressions correlating the volumetric flow rate to the inlet and outlet pressures are derived for the time-independent flow of Newtonian fluids in cylindrically-shaped elastic tubes using a one-dimensional Navier-Stokes flow model with two pressure-area constitutive relations. These expressions for elastic tubes are the equivalent of Poiseuille and Poiseuille-type expressions for ri...
متن کامل