SVR with Hybrid Chaotic Immune Algorithm for Seasonal Load Demand Forecasting

نویسندگان

  • Wei-Chiang Hong
  • Yucheng Dong
  • Chien-Yuan Lai
  • Li-Yueh Chen
  • Shih-Yung Wei
چکیده

Accurate electric load forecasting has become the most important issue in energy management; however, electric load demonstrates a seasonal/cyclic tendency from economic activities or the cyclic nature of climate. The applications of the support vector regression (SVR) model to deal with seasonal/cyclic electric load forecasting have not been widely explored. The purpose of this paper is to present a SVR model which combines the seasonal adjustment mechanism and a chaotic immune algorithm (namely SSVRCIA) to forecast monthly electric loads. Based on the operation procedure of the immune algorithm (IA), if the population diversity of an initial population cannot be maintained under selective pressure, then IA could only seek for the solutions in the narrow space and the solution is far from the global optimum (premature convergence). The proposed chaotic immune algorithm (CIA) based on the chaos optimization algorithm and IA, which diversifies the initial definition domain in stochastic optimization procedures, is used to overcome the premature local optimum issue in determining three parameters of a SVR model. A numerical example from an existing reference is used to elucidate the forecasting performance of the proposed SSVRCIA model. The forecasting results indicate that OPEN ACCESS Energies 2011, 4 961 the proposed model yields more accurate forecasting results than the ARIMA and TF-ε-SVR-SA models, and therefore the SSVRCIA model is a promising alternative for electric load forecasting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cyclic electric load forecasting by seasonal SVR with chaotic genetic algorithm

Application of support vector regression (SVR) with chaotic sequence and evolutionary algorithms not only could improve forecasting accuracy performance, but also could effectively avoid converging prematurely (i.e., trapping into a local optimum). However, the tendency of electric load sometimes reveals cyclic changes (such as hourly peak in a working day, weekly peak in a business week, and m...

متن کامل

Hybrid Chaotic Quantum Bat Algorithm with SVR in Electric Load Forecasting

Hybridizing evolutionary algorithms with a support vector regression (SVR) model to conduct the electric load forecasting has demonstrated the superiorities in forecasting accuracy improvements. The recently proposed bat algorithm (BA), compared with classical GA and PSO algorithm, has greater potential in forecasting accuracy improvements. However, the original BA still suffers from the embedd...

متن کامل

Applications of the Chaotic Quantum Genetic Algorithm with Support Vector Regression in Load Forecasting

Accurate electricity forecasting is still the critical issue in many energy management fields. The applications of hybrid novel algorithms with support vector regression (SVR) models to overcome the premature convergence problem and improve forecasting accuracy levels also deserve to be widely explored. This paper applies chaotic function and quantum computing concepts to address the embedded d...

متن کامل

Application of Hybrid Quantum Tabu Search with Support Vector Regression (SVR) for Load Forecasting

Hybridizing chaotic evolutionary algorithms with support vector regression (SVR) to improve forecasting accuracy is a hot topic in electricity load forecasting. Trapping at local optima and premature convergence are critical shortcomings of the tabu search (TS) algorithm. This paper investigates potential improvements of the TS algorithm by applying quantum computing mechanics to enhance the se...

متن کامل

A Novel Hybrid Short Term Load Forecasting Model Considering the Error of Numerical Weather Prediction

In order to reduce the effect of numerical weather prediction (NWP) error on short term load forecasting (STLF) and improve the forecasting accuracy, a new hybrid model based on support vector regression (SVR) optimized by an artificial bee colony (ABC) algorithm (ABC-SVR) and seasonal autoregressive integrated moving average (SARIMA) model is proposed. According to the different day types and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011