Statistical Evaluation of The Predictive Toxicology Challenge

نویسندگان

  • Hannu Toivonen
  • Ashwin Srinivasan
  • Ross D. King
  • Stefan Kramer
  • Christoph Helma
چکیده

Motivation The development of in silico models to predict chemical carcinogenesis from molecular structure would help greatly to prevent environmentally caused cancers. The Predictive Toxicology Challenge (PTC) competition was organized to test the state-of-the-art in applying machine learning to form such predictive models. Results Fourteen machine learning groups generated 111 models. The use of Receiver Operating Characteristic (ROC) space allowed the models to be uniformly compared regardless of the error cost function. We developed a statistical method to test if a model performs significantly better than random in ROC space. Using this test as criteria five models performed better than random guessing at a significance level of 0.05. Statistically the best predictor was the Viniti model for female mice, with value below 0.002. The toxicologically most interesting models were Leuven2 for male mice, and Kwansei for female rats. These models performed well in the statistical analysis and they are in the middle of ROC space, i.e., distant from extreme cost assumptions. These predictive models were also independently judged by domain experts to be among the three most interesting, and are believed to include a small but significant amount of empirically learned toxicological knowledge. Availability PTC details and data can be found at: http://www.predictive-toxicology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Evaluation of the Predictive Toxicology Challenge 2000-2001

MOTIVATION The development of in silico models to predict chemical carcinogenesis from molecular structure would help greatly to prevent environmentally caused cancers. The Predictive Toxicology Challenge (PTC) competition was organized to test the state-of-the-art in applying machine learning to form such predictive models. RESULTS Fourteen machine learning groups generated 111 models. The u...

متن کامل

A survey of the Predictive Toxicology Challenge

Motivation: The Predictive Toxicology Challenge (PTC) was initiated to stimulate the development of advanced techniques for predictive toxicology models. The goal of this challenge was to compare different approaches for the prediction of rodent carcinogenicity, based on the experimental results of the US National Toxicology Program (NTP). Results: 111 sets of predictions for 185 compounds have...

متن کامل

A Survey of the Predictive Toxicology Challenge 2000-2001

MOTIVATION The Predictive Toxicology Challenge (PTC) was initiated to stimulate the development of advanced techniques for predictive toxicology models. The goal of this challenge was to compare different approaches for the prediction of rodent carcinogenicity, based on the experimental results of the US National Toxicology Program (NTP). RESULTS 111 sets of predictions for 185 compounds have...

متن کامل

Performance Evaluation of Dynamic Modulus Predictive Models for Asphalt Mixtures

Dynamic modulus characterizes the viscoelastic behavior of asphalt materials and is the most important input parameter for design and rehabilitation of flexible pavements using Mechanistic–Empirical Pavement Design Guide (MEPDG). Laboratory determination of dynamic modulus is very expensive and time consuming. To overcome this challenge, several predictive models were developed to determine dyn...

متن کامل

Multiple-Instance Case-Based Learning for Predictive Toxicology

Predictive toxicology is the task of building models capable of determining, with a certain degree of accuracy, the toxicity of chemical compounds. Machine Learning (ML) in general, and lazy learning techniques in particular, have been applied to the task of predictive toxicology. ML approaches differ in which kind of chemistry knowledge they use but all rely on some specific representation of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002