Trabecular bone microdamage and microstructural stresses under uniaxial compression.
نویسندگان
چکیده
The balance between local remodeling and accumulation of trabecular bone microdamage is believed to play an important role in the maintenance of skeletal integrity. However, the local mechanical parameters associated with microdamage initiation are not well understood. Using histological damage labeling, micro-CT imaging, and image-based finite element analysis, regions of trabecular bone microdamage were detected and registered to estimated microstructural von Mises effective stresses and strains, maximum principal stresses and strains, and strain energy density (SED). Bovine tibial trabecular bone cores underwent a stepwise uniaxial compression routine in which specimens were micro-CT imaged following each compression step. The results indicate that the mode of trabecular failure observed by micro-CT imaging agreed well with the polarity and distribution of stresses within an individual trabecula. Analysis of on-axis subsections within specimens provided significant positive relationships between microdamage and each estimated tissue stress, strain and SED parameter. In a more localized analysis, individual microdamaged and undamaged trabeculae were extracted from specimens loaded within the elastic region and to the apparent yield point. As expected, damaged trabeculae in both groups possessed significantly higher local stresses and strains than undamaged trabeculae. The results also indicated that microdamage initiation occurred prior to apparent yield at local principal stresses in the range of 88-121 MPa for compression and 35-43 MPa for tension and local principal strains of 0.46-0.63% in compression and 0.18-0.24% in tension. These data provide an important step towards understanding factors contributing to microdamage initiation and establishing local failure criteria for normal and diseased trabecular bone.
منابع مشابه
(micro-CT) imaging, and voxel-based finite element modeling to detect trabecular bone microdamage and microfracture and estimate the associated microstructural stresses and strains. METHODS Cylindrical reduced-section specimens were prepared from skeletally mature bovine proximal tibial trabecular bone
INTRODUCTION The onset of trabecular bone damage is a local phenomenon, governed by tissue-level material properties, and architecture at the initiation site. Different modes of microfracture (bending, buckling, and shearing) and microdamage (single, parallel, and cross-hatched cracks) can occur [1]. The initiation of bone damage can lead to two scenarios. In the first case, normal repair proce...
متن کاملAn experimental and computational investigation of the post-yield behaviour of trabecular bone during vertebral device subsidence.
Interbody fusion device subsidence has been reported clinically. An enhanced understanding of the mechanical behaviour of the surrounding bone would allow for accurate predictions of vertebral subsidence. The multiaxial inelastic behaviour of trabecular bone is investigated at a microscale and macroscale level. The post-yield behaviour of trabecular bone under hydrostatic and confined compressi...
متن کاملA comparison of the fatigue behavior of human trabecular and cortical bone tissue.
The fatigue properties of trabecular bone tissue (single trabeculae) and similarly sized cortical bone specimens from human tibia were experimentally determined on a microstructural level using four-point bending cyclic tests, and they were compared based on modulus, mineral density, and microstructural characteristics. The results showed that trabecular specimens had significantly lower moduli...
متن کاملEffects of preexisting microdamage, collagen cross-links, degree of mineralization, age, and architecture on compressive mechanical properties of elderly human vertebral trabecular bone.
Previous studies have shown that the mechanical properties of trabecular bone are determined by bone volume fraction (BV/TV) and microarchitecture. The purpose of this study was to explore other possible determinants of the mechanical properties of vertebral trabecular bone, namely collagen cross-link content, microdamage, and mineralization. Trabecular bone cores were collected from human L2 v...
متن کاملVariability of trabecular microstructure is age-, gender-, race- and anatomic site-dependent and affects stiffness and stress distribution properties of human vertebral cancellous bone.
Cancellous bone microstructure is an important determinant of the mechanical integrity of vertebrae. The numerous microstructural parameters that have been studied extensively are generally represented as a single value obtained as an average over a sample. The range of the intra-sample variability of cancellous microstructure and its effect on the mechanical properties of bone are less well-un...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanics
دوره 38 4 شماره
صفحات -
تاریخ انتشار 2005