Ultrananocrystalline diamond tip integrated onto a heated atomic force microscope cantilever.

نویسندگان

  • Hoe Joon Kim
  • Nicolaie Moldovan
  • Jonathan R Felts
  • Suhas Somnath
  • Zhenting Dai
  • Tevis D B Jacobs
  • Robert W Carpick
  • John A Carlisle
  • William P King
چکیده

We report a wear-resistant ultrananocrystalline (UNCD) diamond tip integrated onto a heated atomic force microscope (AFM) cantilever and UNCD tips integrated into arrays of heated AFM cantilevers. The UNCD tips are batch-fabricated and have apex radii of approximately 10 nm and heights up to 7 μm. The solid-state heater can reach temperatures above 600 °C and is also a resistive temperature sensor. The tips were shown to be wear resistant throughout 1.2 m of scanning on a single-crystal silicon grating at a force of 200 nN and a speed of 10 μm s(-1). Under the same conditions, a silicon tip was completely blunted. We demonstrate the use of these heated cantilevers for thermal imaging in both contact mode and intermittent contact mode, with a vertical imaging resolution of 1.9 nm. The potential application to nanolithography was also demonstrated, as the tip wrote hundreds of polyethylene nanostructures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wear-resistant diamond nanoprobe tips with integrated silicon heater for tip-based nanomanufacturing.

We report exceptional nanoscale wear and fouling resistance of ultrananocrystalline diamond (UNCD) tips integrated with doped silicon atomic force microscope (AFM) cantilevers. The resistively heated probe can reach temperatures above 600 degrees C. The batch fabrication process produces UNCD tips with radii as small as 15 nm, with average radius 50 nm across the entire wafer. Wear tests were p...

متن کامل

Practical method to limit tip-sample contact stress and prevent wear in amplitude modulation atomic force microscopy.

Amplitude modulation atomic force microscopy (AM-AFM) is one of the most popular AFM modes because of the reduced tip-sample interaction, compared to contact mode AFM, and the ability to acquire high-resolution images while interrogating the sample's material composition through phase imaging. Despite the reduced tip-sample interaction, tip and sample wear can occur through gradual atomic scale...

متن کامل

Nanometer-scale flow of molten polyethylene from a heated atomic force microscope tip.

We investigate the nanometer-scale flow of molten polyethylene from a heated atomic force microscope (AFM) cantilever tip during thermal dip-pen nanolithography (tDPN). Polymer nanostructures were written for cantilever tip temperatures and substrate temperatures controlled over the range 100-260 °C and while the tip was either moving with speed 0.5-2.0 µm s(-1) or stationary and heated for 0.1...

متن کامل

High Resolution Image with Multi-wall Carbon Nanotube Atomic Force Microscopy Tip (RESEARCH NOTE)

In this paper, a simple and reproducible approach for attaching the multi-wall carbon nanotubes (MWNTs) to the apex of the atomic force microscope probe has been proposed. For this purpose, the dielectrophoresis method was applied due to its simple performance, cheapness and reliability. In this method, various parameters such as voltage, frequency, concentration of carbon nanotubes solution an...

متن کامل

Sensitivity analysis of a caliper formed atomic force microscope cantilever based on a modified couple stress theory

A relationship based on the modified couple stress theory is developed to investigate the flexural sensitivity of an atomic force microscope (AFM) with assembled cantilever probe (ACP). This ACP comprises a horizontal cantilever, two vertical extensions and two tips located at the free ends of the extensions which form a caliper. An approximate solution to the flexural vibration problem is obta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 23 49  شماره 

صفحات  -

تاریخ انتشار 2012