SCN4A pore mutation pathogenetically contributes to autosomal dominant essential tremor and may increase susceptibility to epilepsy.
نویسندگان
چکیده
Essential tremor (ET) is the most prevalent movement disorder, affecting millions of people in the USA. Although a positive family history is one of the most important risk factors for ET, the genetic causes of ET remain unknown. In an attempt to identify genetic causes for ET, we performed whole-exome sequencing analyses in a large Spanish family with ET, in which two patients also developed epilepsy. To further assess pathogenicity, site-directed mutagenesis, mouse and human brain expression analyses, and patch clamp techniques were performed. A disease-segregating mutation (p.Gly1537Ser) in the SCN4A gene was identified. Posterior functional analyses demonstrated that more rapid kinetics at near-threshold potentials altered ion selectivity and facilitated the conductance of both potassium and ammonium ions, which could contribute to tremor and increase susceptibility to epilepsy, respectively. In this report, for the first time, we associated the genetic variability of SCN4A with the development of essential tremor, which adds ET to the growing list of neurological channelopathies.
منابع مشابه
Normokalemic periodic paralysis with involuntary movements and generalized epilepsy associated with two novel mutations in SCN4A gene
Mutations of skeletal muscle sodium channel a subunit (SCN4A) gene are associated with a group of allelic diseases, including periodic paralysis, paramyotonia congenital, sodium channel myotonia, and congenital myasthenic syndrome. Periodic paralysis is characterized by episodic attacks of flaccid weakness with the fluctuation of serum potassium, which are usually limited to skeletal muscles ow...
متن کاملClinical-molecular study of a family with essential tremor, late onset seizures and periodic paralysis
We report the clinical features of, and the molecular study performed on, a Spanish family with essential tremor (ET), late onset epilepsy and autosomal dominant hypokalemic periodic paralysis (hypoPP). The presence of hypoPP in this kindred suggested an ion channel as a candidate gene for ET. Our study identified an Arg528His CACNL1A3 mutation in patients with hypoPP, and excluded this mutatio...
متن کاملAutosomal Dominant Cortical Tremor, Myoclonus, and Epilepsy Syndrome mimicking Juvenile Myoclonic Epilepsy.
INTRODUCTION Autosomal dominant cortical tremor, myoclonus, and epilepsy (ADCME) syndrome is a genetically heterogeneous and under-recognized disease characterized by tremulous movements mimicking essential tremor, myoclonus, and rare generalized tonic-clonic seizures. Here we described the clinical and electrophysiological features of three siblings with ADCME syndrome mimicking juvenile myocl...
متن کاملHypokalemic periodic paralysis due to the SCN4A R672H mutation in a Turkish family.
Hypokalemic periodic paralysis (HypoPP) is an autosomal dominant disorder characterized by episodic attacks of muscle weakness associated with a decrease in blood potassium levels. Recently, mutations in the gene coding for the skeletal muscle voltage-gated sodium channel alpha subunit (SCN4A) have been reported. We detected the R672H mutation in one HypoPP Turkish family.
متن کاملIdentification of genetic variations of a Chinese family with paramyotonia congenita via whole exome sequencing
Paramyotonia congenita (PC) is a rare autosomal dominant neuromuscular disorder characterized by juvenile onset and development of cold-induced myotonia after repeated activities. The disease is mostly caused by genetic mutations of the sodium channel, voltage-gated, type IV, alpha subunit (SCN4A) gene. This study intended to systematically identify the causative genetic variations of a Chinese...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 24 24 شماره
صفحات -
تاریخ انتشار 2015