Spatial and Temporal Patterns of Carbon Storage in Forest Ecosystems on Hainan Island, Southern China

نویسندگان

  • Hai Ren
  • Linjun Li
  • Qiang Liu
  • Xu Wang
  • Yide Li
  • Dafeng Hui
  • Shuguang Jian
  • Jun Wang
  • Huai Yang
  • Hongfang Lu
  • Guoyi Zhou
  • Xuli Tang
  • Qianmei Zhang
  • Dong Wang
  • Lianlian Yuan
  • Xubing Chen
  • Ting Wang
چکیده

Spatial and temporal patterns of carbon (C) storage in forest ecosystems significantly affect the terrestrial C budget, but such patterns are unclear in the forests in Hainan Province, the largest tropical island in China. Here, we estimated the spatial and temporal patterns of C storage from 1993-2008 in Hainan's forest ecosystems by combining our measured data with four consecutive national forest inventories data. Forest coverage increased from 20.7% in the 1950s to 56.4% in the 2010s. The average C density of 163.7 Mg C/ha in Hainan's forest ecosystems in this study was slightly higher than that of China's mainland forests, but was remarkably lower than that in the tropical forests worldwide. Total forest ecosystem C storage in Hainan increased from 109.51 Tg in 1993 to 279.17 Tg in 2008. Soil C accounted for more than 70% of total forest ecosystem C. The spatial distribution of forest C storage in Hainan was uneven, reflecting differences in land use change and forest management. The potential carbon sequestration of forest ecosystems was 77.3 Tg C if all forested lands were restored to natural tropical forests. To increase the C sequestration potential on Hainan Island, future forest management should focus on the conservation of natural forests, selection of tree species, planting of understory species, and implementation of sustainable practices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temporal-Spatial Pattern of Carbon Stocks in Forest Ecosystems in Shaanxi, Northwest China

The precise and accurate quantitative evaluation of the temporal and spatial pattern of carbon (C) storage in forest ecosystems is critical for understanding the role of forests in the global terrestrial C cycle and is essential for formulating forest management policies to combat climate change. In this study, we examined the C dynamics of forest ecosystems in Shaanxi, northwest China, based o...

متن کامل

Changes in the spatial and temporal pattern of natural forest cover on Hainan Island from the 1950s to the 2010s: implications for natural forest conservation and management

The study of the past, present, and future state and dynamics of the tropical natural forest cover (NFC) might help to better understand the pattern of deforestation and fragmentation as well as the influence of social and natural processes. The obtained information will support the development of effective conservation policies and strategies. In the present study, we used historical data of t...

متن کامل

Spatiotemporal patterns and dynamics of species richness and abundance of woody plant functional groups in a tropical forest landscape of Hainan Island, South China.

Tropical forests are among the most species-diverse ecosystems on Earth. Their structures and ecological functions are complex to understand. Functional group is defined as a group of species that play similar roles in an ecosystem. The functional group approach has been regarded as an effective way of linking the compositions of complex ecosystems with their ecological functions. To understand...

متن کامل

An Assessment of Carbon Storage in China’s Arboreal Forests

In the years 2009–2013, China carried out its eighth national survey of forest resources. Based on the survey data, this paper used a biomass conversion function method to evaluate the carbon stores and carbon density of China’s arboreal forests. The results showed that: (1) By age group, the largest portion of carbon stores in China’s arboreal forests are in middle-aged forests. Over-mature fo...

متن کامل

The Environment, Not Space, Dominantly Structures the Landscape Patterns of the Richness and Composition of the Tropical Understory Vegetation

The mechanisms driving the spatial patterns of species richness and composition are essential to the understanding of biodiversity. Numerous studies separately identify the contributions of the environment (niche process) and space (neutral process) to the species richness or composition at different scales, but few studies have investigated the contributions of both types of processes in the t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014