High-fidelity conformation of graphene to SiO2 topographic features.

نویسندگان

  • W G Cullen
  • M Yamamoto
  • K M Burson
  • J H Chen
  • C Jang
  • L Li
  • M S Fuhrer
  • E D Williams
چکیده

High-resolution noncontact atomic force microscopy of SiO2 reveals previously unresolved roughness at the few-nm length scale, and scanning tunneling microscopy of graphene on SiO2 shows graphene to be slightly smoother than the supporting SiO2 substrate. A quantitative energetic analysis explains the observed roughness of graphene on SiO2 as extrinsic, and a natural result of highly conformal adhesion. Graphene conforms to the substrate down to the smallest features with nearly 99% fidelity, indicating conformal adhesion can be highly effective for strain engineering of graphene.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltammetric determination of acetaminophen and tryptophan using a graphite screen printed electrode modified with functionalized graphene oxide nanosheets within a Fe3O4@SiO2 nanocomposite

A high sensitive electrochemical nanostructure sensor based on graphene oxide/Fe3O4@SiO2 nanocomposite modified graphite screen printed electrode (GO/Fe3O4@SiO2/SPE) has been developed for trace analysis of acetaminophen. The electrochemical study of the modified electrode, as well as its efficiency for simultaneous voltammetric oxidation of acetaminophen and tryptophan is described. Compared w...

متن کامل

How graphene slides: measurement and theory of strain-dependent frictional forces between graphene and SiO2.

Strain, bending rigidity, and adhesion are interwoven in determining how graphene responds when pulled across a substrate. Using Raman spectroscopy of circular, graphene-sealed microchambers under variable external pressure, we demonstrate that graphene is not firmly anchored to the substrate when pulled. Instead, as the suspended graphene is pushed into the chamber under pressure, the supporte...

متن کامل

Voltammetric determination of acetaminophen and tryptophan using a graphite screen printed electrode modified with functionalized graphene oxide nanosheets within a Fe3O4@SiO2 nanocomposite

A high sensitive electrochemical nanostructure sensor based on graphene oxide/Fe3O4@SiO2 nanocomposite modified graphite screen printed electrode (GO/Fe3O4@SiO2/SPE) has been developed for trace analysis of acetaminophen. The electrochemical study of the modified electrode, as well as its efficiency for simultaneous voltammetric oxidation of acetaminophen and tryptophan is described. Compared w...

متن کامل

Recording Spikes Activity in Cultured Hippocampal Neurons Using Flexible or Transparent Graphene Transistors

The emergence of nanoelectronics applied to neural interfaces has started few decades ago, and aims to provide new tools for replacing or restoring disabled functions of the nervous systems as well as further understanding the evolution of such complex organization. As the same time, graphene and other 2D materials have offered new possibilities for integrating micro and nano-devices on flexibl...

متن کامل

A fast transfer-free synthesis of high-quality monolayer graphene on insulating substrates by a simple rapid thermal treatment.

The transfer-free synthesis of high-quality, large-area graphene on a given dielectric substrate, which is highly desirable for device applications, remains a significant challenge. In this paper, we report on a simple rapid thermal treatment (RTT) method for the fast and direct growth of high-quality, large-scale monolayer graphene on a SiO2/Si substrate from solid carbon sources. The stack st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 105 21  شماره 

صفحات  -

تاریخ انتشار 2010