Capacitance‐Assisted Sustainable Electrochemical Carbon Dioxide Mineralisation
نویسندگان
چکیده
An electrochemical cell comprising a novel dual-component graphite and Earth-crust abundant metal anode, a hydrogen producing cathode and an aqueous sodium chloride electrolyte was constructed and used for carbon dioxide mineralisation. Under an atmosphere of 5 % carbon dioxide in nitrogen, the cell exhibited both capacitive and oxidative electrochemistry at the anode. The graphite acted as a supercapacitive reagent concentrator, pumping carbon dioxide into aqueous solution as hydrogen carbonate. Simultaneous oxidation of the anodic metal generated cations, which reacted with the hydrogen carbonate to give mineralised carbon dioxide. Whilst conventional electrochemical carbon dioxide reduction requires hydrogen, this cell generates hydrogen at the cathode. Carbon capture can be achieved in a highly sustainable manner using scrap metal within the anode, seawater as the electrolyte, an industrially relevant gas stream and a solar panel as an effective zero-carbon energy source.
منابع مشابه
Electro-chemical and biological properties of carbon nanotube based multi-electrode arrays.
A novel class of micro-electrodes was fabricated by synthesizing high density carbon nanotube islands on lithographically defined, passivated titanium nitride conductors on a silicon dioxide substrate. Electrochemical characterization in phosphate buffered saline of these new electrodes reveals superb electrochemical properties marked by featureless rectangular cyclic voltammetry curves corresp...
متن کاملHierarchical mesoporous yolk-shell structured carbonaceous nanospheres for high performance electrochemical capacitive energy storage.
Hierarchical mesoporous yolk-shell structured carbon nanospheres (YSCNs) with an ordered mesoporous carbon core and a microporous carbon shell show excellent electrochemical performance with a maximal specific capacitance of 159 F g(-1).
متن کاملReview of Electrochemical Capacitors Based on Carbon Nanotubes and Graphene
Electrochemical capacitors, which can store large amount of electrical energy with the capacitance of thousands of Farads, have recently been attracting enormous interest and attention. Carbon nanostructures such as carbon nanotubes and graphene are considered as the potentially revolutionary energy storage materials due to their excellent properties. This paper is focused on the application of...
متن کاملControlled synthesis of mesoporous carbon nanostructures via a "silica-assisted" strategy.
We have established a facile and generalizable "silica-assisted" synthesis for diverse carbon spheres-a category that covers mesoporous carbon nanospheres, hollow mesoporous carbon nanospheres, and yolk-shell mesoporous carbon nanospheres-by using phenolic resols as a polymer precursor, silicate oligomers as an inorganic precursor, and hexadecyl trimethylammoniumchloride as a template. The part...
متن کاملDirect fabrication of 3D graphene on nanoporous anodic alumina by plasma-enhanced chemical vapor deposition
High surface area electrode materials are of interest for a wide range of potential applications such as super-capacitors and electrochemical cells. This paper describes a fabrication method of three-dimensional (3D) graphene conformally coated on nanoporous insulating substrate with uniform nanopore size. 3D graphene films were formed by controlled graphitization of diamond-like amorphous carb...
متن کامل