Lagrangian Meshfree Particle-based Computational Acoustics for Two- dimensional Sound Propagation and Scattering Problems
نویسندگان
چکیده
Meshfree particle method, which is always regarded as a pure Lagrangian approach, is easily represented complicated domain topologies, moving boundaries, and multiphase media. Solving acoustic problems with the mesfree particle method forms a branch of the acoustic wave modeling field, namely, particle-based computational acoustics (PCA). The aim of this paper is to improve the accuracy of using the PCA method to solve two-dimensional acoustic problems, and realize the particle representation with a hybrid meshfree and finite-difference time-domain (FDTD) method for acoustic boundary conditions at both the plane and curved surface. As a widely used Lagrangian meshfree method, the smoothed particle hydrodynamics (SPH) based on the support domain and the kernel function has developed rapidly in recent years. The traditional SPH method is easily implements parallel processing and has been applied in sound wave simulation. As a corrective method with higher accuracy than SPH, the acoustic propagation and scattering in the time domain is simulated with the corrective smoothed particle method (CSPM). Moreover, a hybrid meshfree-FDTD boundary treatment technique is utilized to represent different acoustic boundaries in the Lagrangian approach. In this boundary treatment technique, the parameter value of virtual particles is obtained with the FDTD method, which concerns truncation errors based on the Tayler series expansion. Soft, rigid, and Mur’s absorbing boundary conditions are developed to simulate sound waves in finite and infinite domain. Results of modeling acoustic propagation and scattering show that CSPM is accurate and convergence with exact solutions, and different acoustic boundaries are validated to be effective in the computation.
منابع مشابه
Modeling Sound Propagation Using the Corrective Smoothed Particle Method with an Acoustic Boundary Treatment Technique
The development of computational acoustics allows simulation of sound generation and propagation in complex environment. In particular, meshfree methods are widely used to solve acoustics problems through arbitrarily distributed field points and approximation smoothness flexibility. As a Lagrangian meshfree method, smoothed particle hydrodynamics (SPH) method reduce the difficulty in solving pr...
متن کاملA Lagrangian Approach for Computational Acoustics with Meshfree Method
Although Eulerian approaches are standard in computational acoustics, they are less effective for certain classes of problems like bubble acoustics and combustion noise. A different approach for solving acoustic problems is to compute with individual particles following particle motion. In this paper, a Lagrangian approach to model sound propagation in moving fluid is presented and implemented ...
متن کاملTime Domain Simulation of Sound Waves Using Smoothed Particle Hydrodynamics Algorithm with Artificial Viscosity
Smoothed particle hydrodynamics (SPH), as a Lagrangian, meshfree method, is supposed to be useful in solving acoustic problems, such as combustion noise, bubble acoustics, etc., and has been gradually used in sound wave computation. However, unphysical oscillations in the sound wave simulation cannot be ignored. In this paper, an artificial viscosity term is added into the standard SPH algorith...
متن کاملUse of Stochastic Turbulence Models in Jet Acoustics
There are many approaches to determine the sound propagated from turbulent flows. In hybrid methods, the turbulent noise source field is computed or modeled separately from the far-field calculations. To have an initial and quick estimation of the sound propagation, less computationally intensive methods can be developed using stochastic models of the turbulent fluctuations. In this paper, ...
متن کاملTechnical Report 2010-2 Smoothed Particle Hydrodynamics in Acoustic Simulations
This contribution reports on the potential and limits of a meshless Lagrangian technique, called Smoothed Particle Hydrodynamics (SPH), as a method for acoustic simulation. The established techniques for acoustic simulation, such as the Boundary Element Method (BEM), Finite Differences Method (FD), and Finite Element Method (FEM), draw on mesh-based numerical solution techniques. In spite of st...
متن کامل