Regeneration of Articular Cartilage by Human ESC‐Derived Mesenchymal Progenitors Treated Sequentially with BMP‐2 and Wnt5a
نویسندگان
چکیده
The success of cell-based therapies to restore joint cartilage requires an optimal source of reparative progenitor cells and tight control of their differentiation into a permanent cartilage phenotype. Bone morphogenetic protein 2 (BMP-2) has been extensively shown to promote mesenchymal cell differentiation into chondrocytes in vitro and in vivo. Conversely, developmental studies have demonstrated decreased chondrocyte maturation by Wingless-Type MMTV Integration Site Family, Member 5A (Wnt5a). Thus, we hypothesized that treatment of human embryonic stem cell (hESC)-derived chondroprogenitors with BMP-2 followed by Wnt5a may control the maturational progression of these cells into a hyaline-like chondrocyte phenotype. We examined the effects of sustained exposure of hESC-derived mesenchymal-like progenitors to recombinant Wnt5a or BMP-2 in vitro. Our data indicate that BMP-2 promoted a strong chondrogenic response leading to terminal maturation, whereas recombinant Wnt5a induced a mild chondrogenic response without promoting hypertrophy. Moreover, Wnt5a suppressed BMP-2-mediated chondrocyte maturation, preventing the formation of fibrocartilaginous tissue in high-density cultures treated sequentially with BMP-2 and Wnt5a. Implantation of scaffoldless pellets of hESC-derived chondroprogenitors pretreated with BMP-2 followed by Wnt5a into rat chondral defects induced an articular-like phenotype in vivo. Together, the data establish a novel role for Wnt5a in controlling the progression from multipotency into an articular-like cartilage phenotype in vitro and in vivo. Stem Cells Translational Medicine 2017;6:40-50.
منابع مشابه
Mesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold
Objective (s): The scarcity of articular cartilage defect to repair due to absence of blood vessels and tissue engineering is one of the promising approaches for cartilage regeneration. The objective of this study was to prepare an extracellular matrix derived decellularized bovine articular cartilage scaffold and investigate its interactions with seeded rat bone marrow mesenchymal stem cells (...
متن کاملConditioned medium derived from mesenchymal Stem cells regenerates’ defected articular cartilage
Background & Aims: One of cell- based technical issues associated with cartilage repair assay is delivering cells to the site of the parts where damage is created. Mesenchymal stem cells (MSCs) with their chondrogenic potential are ideal candidates for cartilage regeneration. High expression of cartilage hypertrophy markers by MSCs would result in apoptosis and ossification. This investigation ...
متن کاملDesigning of Human Cartilage Tissue, by Differentiation of Adipose-Derived Stem Cells With BMP-6 in Alginate Scaffold
Purpose: In the present study the effect of BMP-6 was investigated on chondrogenesis of adiposederived stem cells. Materials and Methods: Mesenchymal stem cells derived from subcutaneous adipose tissue were cultured on alginate scaffold to induce chondrogenesis in experimental group, with chondrogenic medium having BMP-6 growth factor for 3 weeks. In control group medium without BMP-6 was appli...
متن کاملRegeneration of ovine articular cartilage defects by cell-free polymer-based implants.
The aim of our study was the evaluation of a cell-free cartilage implant that allows the recruitment of mesenchymal stem and progenitor cells by chemo-attractants and subsequent guidance of the progenitors to form cartilage repair tissue after microfracture. Chemotactic activity of human serum on human mesenchymal progenitors was tested in 96-well chemotaxis assays and chondrogenic differentiat...
متن کاملMesenchymal Stem Cell Purification from the Articular Cartilage Cell Culture
Objective Articular cartilage as an avascular skeletal tissue possesses limited capacity to heal. On the other hand, it is believed that the regeneration capacity of each tissue is largely related to its stem cell contents. Little is known about the presence of mesenchymal stem cells in articular cartilage tissue. This subject is investigated in the present study. Materials and Methods Artic...
متن کامل