Changing poles in the rational Lanczos method for the Hermitian eigenvalue problem

نویسنده

  • Karl Meerbergen
چکیده

Applications such as the modal analysis of structures and acoustic cavities require a number of eigenvalues and eigenvectors of large scale Hermitian eigenvalue problems. The most popular method is probably the spectral transformation Lanczos method. An important disadvantage of this method is that a change of pole requires a complete restart. In this paper, we investigate the use of the rational Krylov method for this application. This method does not require a complete restart after a change of pole. The contribution of this paper is threefold. First, it is shown that the change of pole can be considered as a change of Lanczos basis. Second, moving the pole near a locked eigenvalue may prevent other eigenvalues to be computed accurately. Third, we show that a pole chosen close to an eigenvalue may lead to a loss of numerical stability. Usually, this will not lead to disaster but reduce the accuracy of the computed eigenvalues away from the pole. Numerical examples illustrate the theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ABLE: An Adaptive Block Lanczos Method for Non-Hermitian Eigenvalue Problems

This work presents an adaptive block Lanczos method for large-scale non-Hermitian Eigenvalue problems (henceforth the ABLE method). The ABLE method is a block version of the non-Hermitian Lanczos algorithm. There are three innovations. First, an adaptive blocksize scheme cures (near) breakdown and adapts the blocksize to the order of multiple or clustered eigenvalues. Second, stopping criteria ...

متن کامل

A numerical solution of the constrained weighted energy problem

A numerical algorithm is presented to solve the constrained weighted energy problem from potential theory. As one of the possible applications of this algorithm, we study the convergence properties of the rational Lanczos iteration method for the symmetric eigenvalue problem. The constrained weighted energy problem characterizes the region containing those eigenvalues that are well approximated...

متن کامل

Fast Computation of Spectral Densities for Generalized Eigenvalue Problems

The distribution of the eigenvalues of a Hermitian matrix (or of a Hermitian matrix pencil) reveals important features of the underlying problem, whether a Hamiltonian system in physics, or a social network in behavioral sciences. However, computing all the eigenvalues explicitly is prohibitively expensive for real-world applications. This paper presents two types of methods to efficiently esti...

متن کامل

The Design of a Block Rational Lanczos Code with Partial Reorthogonalization and Implicit Restarting

We discuss the design and development of a new Fortran code EA16 for the computation of selected eigenvalues and eigenvectors of large-scale real symmetric eigenvalue problems. EA16 can be used for either the standard or the generalized eigenvalue problem. The underlying method used by EA16 is the block Lanczos method with partial reorthogonalization plus implicit restarting, combined with purg...

متن کامل

Efficient Algorithms for Estimating the Absorption Spectrum within Linear Response TDDFT.

We present a special symmetric Lanczos algorithm and a kernel polynomial method (KPM) for approximating the absorption spectrum of molecules within the linear response time-dependent density functional theory (TDDFT) framework in the product form. In contrast to existing algorithms, the new algorithms are based on reformulating the original non-Hermitian eigenvalue problem as a product eigenval...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerical Lin. Alg. with Applic.

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2001