Quasistatic Problems in Contact Mechanics

نویسنده

  • M. Shillor
چکیده

form, Problem P . Find fu; ; g such that 0 +K1 +K2 + C1v + S(v; ; ) = Q in V 0; Bv + Au + C2 + 4j(v; ; ; v) 3 f in E 0: Here f 2 E 0 and Q 2 V 0 are given by hf; wi = Z T 0 Z f(t)wi(t) dxdt + Z T 0 Z ij (t)wi;j(t) dxdt + Z T 0 Z N fN(t)wi(t)d dt; hQ; i = Z T 0 hq(t); (t)i dt Z T 0 Z 0(t) (t) dxdt Z T 0 Z C hR( (t) R(t)) (t)d dt Z T 0 Z kij ;i(t) ;j(t) dxdt; and 4j(v; ; ; w) denotes the partial subdifferential with respect to w of j(v; ; ; w) = Z T 0 Z C (x; jvT (t) v (t)j; (t))jR n(t)jjwT (t) v (t)jd dt: Theorem [4]. Problem P has a unique solution when 0 is sufficiently small.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerically and parallel scalable TFETI algorithms for quasistatic contact

This paper deals with the solution of the discretized quasistatic 3D Signorini problems with local Coulomb friction. After a time discretization we obtain a system of static contact problems with Coulomb friction. Each of these problems is decomposed by the TFETI domain decomposition method used in auxiliary contact problemswith Tresca friction. The algebraic formulation of these problems in 3D...

متن کامل

Evolutionary Variational Inequalities Arising in Quasistatic Frictional Contact Problems for Elastic Materials

We consider a class of evolutionary variational inequalities arising in quasistatic frictional contact problems for linear elastic materials. We indicate sufficient conditions in order to have the existence, the uniqueness and the Lipschitz continuous dependence of the solution with respect to the data, respectively. The existence of the solution is obtained using a time-discretization method, ...

متن کامل

Approximation and numerical realization of 3D quasistatic contact problems with Coulomb friction

This paper deals with the full discretization of quasistatic 3D Signorini problems with local Coulomb friction and a coefficient of friction which may depend on the solution. After a time discretization we obtain a system of static contact problems with Coulomb friction. Each of these problems is solved by the T-FETI domain decomposition method used in auxiliary contact problems with Tresca fri...

متن کامل

Topology optimization of quasistatic contact problems

This paper deals with the formulation of a necessary optimality condition for a topology optimization problem for an elastic contact problem with Tresca friction. In the paper a quasistatic contact model is considered, rather than a stationary one used in the literature. The functional approximating the normal contact stress is chosen as the shape functional. The aim of the topology optimizatio...

متن کامل

Numericalmodelling of Threedimensional Divided Structures by the Non Smooth Contact Dynamics Method Application to Masonry Buildings

This paper outlines a computational method for modelling 3D divided structures by means of interface models, characterized by unilateral properties. The theoretical framework belongs to the field of non-smooth mechanics which aims at solving problems where severe time and space discontinuities are encountered. Multi-valued and stiff interfaces laws, e.g., Signorini’s condition and Coulomb’s fri...

متن کامل

How granular materials deform in quasistatic conditions

Based on numerical simulations of quasistatic deformation of model granular materials, two rheological regimes are distinguished, according to whether macroscopic strains merely reflect microscopic material strains within the grains in their contact regions (type I strains), or result from instabilities and contact network rearrangements at the microscopic level (type II strains). We discuss th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000