Surface chemistry of nanometer-sized aerosol particles: reactions of molecular oxygen with 30 nm soot particles as a function of oxygen partial pressure.

نویسندگان

  • Amanda M Nienow
  • Jeffrey T Roberts
  • Michael R Zachariah
چکیده

The kinetics of the reaction between soot nanoparticles and molecular oxygen were studied by tandem differential mobility analysis (TDMA). The particles were extracted from the tip of an ethene diffusion flame. Reactions were studied at atmospheric pressure in mixtures of nitrogen and oxygen. The studies involved particles of an initial mobility diameter of 30 nm over broad ranges of temperature (500-1100 degrees C) and oxygen volume fraction (0-1). Measurements as a function of oxygen partial pressure establish that the oxidation kinetics are not first-order in oxygen volume fraction (F(O2)). Rather, the oxidation rate increases rapidly and linearly with F(O2) between 0 and 0.05 and then more slowly but still linearly between 0.05 and 1. Temperature dependent measurements are consistent with a reaction pathway involving two kinetically distinguishable oxidation sites which interconvert thermally and through oxidation. Results and conclusions are compared to those of earlier studies on the oxidation of soot.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of long-lived reactive oxygen intermediates in the reaction of ozone with aerosol particles.

The heterogeneous reactions of O₃ with aerosol particles are of central importance to air quality. They are studied extensively, but the molecular mechanisms and kinetics remain unresolved. Based on new experimental data and calculations, we show that long-lived reactive oxygen intermediates (ROIs) are formed. The chemical lifetime of these intermediates exceeds 100 seconds, which is much longe...

متن کامل

Formation of nanoparticles in flames; measurement by particle mass spectrometry and numerical simulation.

The size distributions of nanoparticles in flames are measured using a novel particle mass spectrometer (PMS), which is developed for the size range between 0.3 and 50 nm and for number concentrations between 10(9) and 10(13). Using this instrument the particles are sampled without prior dilution from the flame into a molecular beam. The charged nanoparticles are then deflected by an electric f...

متن کامل

Nano-sized Amitriptyline (AT) imprinted polymer particles: Synthesis and characterization in Silicon oil

Amitriptyline hydrochloride is a highly permeable active pharmaceutical ingredient (API). The function of these drugs is to block the reuptake of the neurotransmitters, norepinephrine and serotonin in the central nervous system. The nano-sized Amitriptyline (AT) imprinted polymer particles were synthesized successfully. The nanoparticles were characterized by Fourier transform infrared spectros...

متن کامل

Nano-sized Amitriptyline (AT) imprinted polymer particles: Synthesis and characterization in Silicon oil

Amitriptyline hydrochloride is a highly permeable active pharmaceutical ingredient (API). The function of these drugs is to block the reuptake of the neurotransmitters, norepinephrine and serotonin in the central nervous system. The nano-sized Amitriptyline (AT) imprinted polymer particles were synthesized successfully. The nanoparticles were characterized by Fourier transform infrared spectros...

متن کامل

Development of a Mathematical Model for Prediction of Pollutants Emission in D. I. Diesel Engines

Major pollutants emission from Direct-Injection (D.I) diesel engines are predicted by means of a mathematical model. In order to construct such a model, an integral Multi-Zone Combustion Model (MZCM) is formulated, which basically consists of jet mixing and combustion submodels. In MZCM, variation of injection pressure is considered. Also time period of ignition delay is predicted by considerin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 109 12  شماره 

صفحات  -

تاریخ انتشار 2005