Magneto-hydrodynamic Stirrer for Stationary and Moving Fluids
نویسندگان
چکیده
A magneto-hydrodynamic (MHD) stirrer that exhibits chaotic advection is designed, modeled, and tested. The stirrer can operate as a stand-alone component or it can be incorporated into a MHD-controlled network. The stirrer consists of a conduit equipped with individually controlled electrodes positioned along its opposing walls. The conduit is filled with an electrolyte solution and positioned in a uniform magnetic field. When a potential difference is applied across pairs or groups of electrodes, the resulting current interacts with the magnetic field to induce Lorentz forces and fluid motion. When the potential difference is applied across opposing electrodes that face each other, the fluid is propelled along the conduit’s length. When the potential difference is applied across diagonally positioned electrodes, a circulatory motion results. When the potential difference alternates periodically across two or more such configurations, chaotic motion evolves and efficient mixing is obtained. This device can serve as both a stirrer and a pump. The advantage of this device over previous designs of MHD stirrers is that it does not require electrodes positioned away from the conduit’s walls. Since this device has no moving parts, the concept is especially suitable for microfluidic applications.
منابع مشابه
A minute magneto hydro dynamic (MHD) mixer
A theoretical and experimental investigation of a magneto hydrodynamic stirrer is presented. Such a stirrer can be used to enhance mixing in micro total analysis systems. The stirrer utilizes arrays of electrodes deposited on a conduit's walls. The conduit is filled with an electrolyte solution. By applying alternating potential differences across pairs of electrodes, currents are induced in va...
متن کاملنا پایداری کلوین - هلمهولتز در اسپیکولهای خورشیدی
Magneto hydrodynamic waves, propagating along spicules, may become unstable and the expected instability is of Kelvin-Helmholtz type. Such instability can trigger the onset of wave turbulence leading to an effective plasma heating and particle acceleration. In present study, two-dimensional magneto hydrodynamic simulations performed on a Cartesian grid is presented in spicules with different de...
متن کاملElectro-magneto-hydrodynamics Flows of Burgers' Fluids in Cylindrical Domains with Time Exponential Memory
This paper investigates the axial unsteady flow of a generalized Burgers’ fluid with fractional constitutive equation in a circular micro-tube, in presence of a time-dependent pressure gradient and an electric field parallel to flow direction and a magnetic field perpendicular on the flow direction. The mathematical model used in this work is based on a time-nonlocal constitutive equation for s...
متن کاملDetermination of stationary region boundary in multiple reference frames method in a mixing system agitated by Helical Ribbon Impeller using CFD
The multiple reference frames (MRF) method is the most suitable method tosimulate impeller rotation in mixing systems. Precise determination of stationaryand moving zones in MRF method leads to accurate results in mixing performance.In this research, the entire volume of mixing system was divided into two zones.The kinetic energy values were used to distinguish the zones with differentvelocitie...
متن کاملNumerical Investigation of Fluid Mixing in a Micro-Channel Mixer with Two Rotating Stirrers by Using the Incompressible SPH Method
Fluid mixing is a crucial and challenging process for microfluidic systems, which are widely used in biochemical processes. Because of their fast performance, active micromixers that use stirrer blades are considered for biological applications. In the present study, by using a robust and convenient Incompressible Smoothed Particle Hydrodynamics (ISPH) method, miscible mix...
متن کامل