Long-residency hydration, cation binding, and dynamics of loop E/helix IV rRNA-L25 protein complex.
نویسندگان
چکیده
Molecular dynamics simulations of RNA-protein complex between Escherichia coli loop E/helix IV (LE/HeIV) rRNA and L25 protein reveal a qualitative agreement between the experimental and simulated structures. The major groove of LE is a prominent rRNA cation-binding site. Divalent cations rigidify the LE major groove geometry whereas in the absence of divalent cations LE extensively interacts with monovalent cations via inner-shell binding. The HeIV region shows bistability of its major groove explaining the observed differences between x-ray and NMR structures. In agreement with the experiments, the simulations suggest that helix-alpha1 of L25 is the least stable part of the protein. Inclusion of Mg2+ cations into the simulations causes perturbation of basepairing at the LE/HeIV junction, which does not, however, affect the protein binding. The rRNA-protein complex is mediated by a number of highly specific hydration sites with long-residing water molecules and two of them are bound throughout the entire 24-ns simulation. Long-residing water molecules are seen also outside the RNA-protein contact areas with water-binding times substantially enhanced compared to simulations of free RNA. Long-residency hydration sites thus represent important elements of the three-dimensional structure of rRNA.
منابع مشابه
The NMR structure of the 5S rRNA E-domain-protein L25 complex shows preformed and induced recognition.
The structure of the complex between ribosomal protein L25 and a 37 nucleotide RNA molecule, which contains the E-loop and helix IV regions of the E-domain of Escherichia coli 5S rRNA, has been determined to an overall r.m.s. displacement of 1.08 A (backbone heavy atoms) by heteronuclear NMR spectroscopy (Protein Databank code 1d6k). The interacting molecular surfaces are bipartite for both the...
متن کاملMolecular dynamics simulations of sarcin–ricin rRNA motif
Explicit solvent molecular dynamics (MD) simulations were carried out for sarcin-ricin domain (SRD) motifs from 23S (Escherichia coli) and 28S (rat) rRNAs. The SRD motif consists of GAGA tetraloop, G-bulged cross-strand A-stack, flexible region and duplex part. Detailed analysis of the overall dynamics, base pairing, hydration, cation binding and other SRD features is presented. The SRD is surp...
متن کاملNon-Watson-Crick basepairing and hydration in RNA motifs: molecular dynamics of 5S rRNA loop E.
Explicit solvent and counterion molecular dynamics simulations have been carried out for a total of >80 ns on the bacterial and spinach chloroplast 5S rRNA Loop E motifs. The Loop E sequences form unique duplex architectures composed of seven consecutive non-Watson-Crick basepairs. The starting structure of spinach chloroplast Loop E was modeled using isostericity principles, and the simulation...
متن کاملThe loop E-loop D region of Escherichia coli 5S rRNA: the solution structure reveals an unusual loop that may be important for binding ribosomal proteins.
BACKGROUND 5S ribosomal RNA is the smallest rRNA. Its Watson-Crick helices were identified more than 20 years ago, but the conformations of its loops have long defied analysis. One of the three arms of 5S rRNA, residues 69-106 in Escherichia coli, contains a 14-residue internal loop called loop E. The sequence of loop E is conserved within kingdoms, and is terminated by a pyrimidine-rich loop c...
متن کاملRNA kink-turns as molecular elbows: hydration, cation binding, and large-scale dynamics.
The presence of Kink-turns (Kt) at key functional sites in the ribosome (e.g., A-site finger and L7/L12 stalk) suggests that some Kink-turns can confer flexibility on RNA protuberances that regulate the traversal of tRNAs during translocation. Explicit solvent molecular dynamics demonstrates that Kink-turns can act as flexible molecular elbows. Kink-turns are associated with a unique network of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 87 5 شماره
صفحات -
تاریخ انتشار 2004