Modal analysis of graphene-based structures for large deformations, contact and material nonlinearities

نویسندگان

  • Reza Ghaffari
  • Roger A. Sauer
چکیده

The nonlinear frequencies of pre-stressed graphene-based structures, such as flat graphene sheets and carbon nanotubes, are calculated. These structures are modeled with a nonlinear hyperelastic shell model. The model is calibrated with quantum mechanics data and is valid for high strains. Analytical solutions of the natural frequencies of various plates are obtained for the Canham bending model by assuming infinitesimal strains. These solutions are used for the verification of the numerical results. The performance of the model is illustrated by means of several examples. Modal analysis is performed for square plates under pure dilatation or uniaxial stretch, circular plates under pure dilatation or under the effects of an adhesive substrate, and carbon nanotubes under uniaxial compression or stretch. The adhesive substrate is modeled with van der Waals interaction (based on the Lennard-Jones potential) and a coarse grained contact model. It is shown that the analytical natural frequencies underestimate the real ones, and this should be considered in the design of devices based on graphene structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Modification on Applied Element Method for Linear Analysis of Structures in the Range of Small and Large Deformations Based on Energy Concept

In this paper, the formulation of a modified applied element method for linear analysis of structures in the range of small and large deformations is expressed. To calculate deformations in the structure, the minimum total potential energy principle is used. This method estimates the linear behavior of the structure in the range of small and large deformations, with a very good accuracy and low...

متن کامل

A TWO-STAGE DAMAGE DETECTION METHOD FOR LARGE-SCALE STRUCTURES BY KINETIC AND MODAL STRAIN ENERGIES USING HEURISTIC PARTICLE SWARM OPTIMIZATION

In this study, an approach for damage detection of large-scale structures is developed by employing kinetic and modal strain energies and also Heuristic Particle Swarm Optimization (HPSO) algorithm. Kinetic strain energy is employed to determine the location of structural damages. After determining the suspected damage locations, the severity of damages is obtained based on variations of modal ...

متن کامل

Deformation Characteristics of Composite Structures

The composites provide design flexibility because many of them can be moulded into complex shapes. The carbon fibre-reinforced epoxy composites exhibit excellent fatigue tolerance and high specific strength and stiffness which have led to numerous advanced applications ranging from the military and civil aircraft structures to the consumer products. However, the modelling of the beams undergoin...

متن کامل

Damage detection of structures using modal strain energy with Guyan reduction method

The subject of structural health monitoring and damage identification of structures at the earliest possible stage has been a noteworthy topic for researchers in the last years. Modal strain energy (MSE) based index is one of the efficient methods which are commonly used for detecting damage in structures. It is also more effective and economical to employ some methods for reducing the degrees ...

متن کامل

Finite Element Formulations for Fast Computation of Large and Moderately Large Deformations

The paper presents finite element formulations aimed at fast computation of large and moderately large flexible body deformations in the fields of virtual reality technology and multibody dynamics. In many areas of application, virtual reality requires real-time or nearly real-time simulation of deformable objects’ behaviour, quite often with deformations involving large local rotations. The we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.00290  شماره 

صفحات  -

تاریخ انتشار 2017