Measles virus phosphoprotein gene products: conformational flexibility of the P/V protein amino-terminal domain and C protein infectivity factor function.

نویسندگان

  • Patricia Devaux
  • Roberto Cattaneo
چکیده

The measles virus (MV) P gene codes for three proteins: P, an essential polymerase cofactor, and V and C, which have multiple functions but are not strictly required for viral propagation in cultured cells. V shares the amino-terminal domain with P but has a zinc-binding carboxyl-terminal domain, whereas C is translated from an overlapping reading frame. During replication, the P protein binds incoming monomeric nucleocapsid (N) proteins with its amino-terminal domain and positions them for assembly into the nascent ribonucleocapsid. The P protein amino-terminal domain is natively unfolded; to probe its conformational flexibility, we fused it to the green fluorescent protein (GFP), thereby also silencing C protein expression. A recombinant virus (MV-GFP/P) expressing hybrid GFP/P and GFP/V proteins in place of standard P and V proteins and not expressing the C protein was rescued and produced normal ratios of mono-, bi-, and tricistronic RNAs, but its replication was slower than that of the parental virus. Thus, the P protein retained nearly intact polymerase cofactor function, even with a large domain added to its amino terminus. Having noted that titers of cell-associated and especially released MV-GFP/P were reduced and knowing that the C protein of the related Sendai virus has particle assembly and infectivity factor functions, we produced an MV-GFP/P derivative expressing C. Intracellular titers of this virus were almost completely restored, and those of released virus were partially restored. Thus, the MV C protein is an infectivity factor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fusion and sequence analysis of the influenza A (H9N2) virus M2e and C-terminal fragment of Mycobacterium tuberculosis HSP70 (H37Rv)

The present study was aimed to construct a fusion plasmid harboring the extracellular domain of the influenza A M2-protein (M2e), which was fused to the N-terminus of the truncated HSP70 (HSP70359–610) molecule as a new approach for future vaccine research against influenza A. The amplified fragments, M2e and HSP70359-610 genes, were gel-purified. The products were then single digested with Bam...

متن کامل

Construction of a Minigenome Rescue System for Measles Virus, AIK-c Strain

Background:In the recent decade, the reverse genetics method has been broadly used for rescue of negative-stranded RNA viruses from cDNA or viral minigenomes. This technique has been applied to study different steps in virus replication and virus-host interactions. Reverse genetics could also be implemented for design of new vaccines. The T7 RNA polymerase activity as well as virus (nucleocapsi...

متن کامل

Measles virus phosphoprotein (P) requires the NH2- and COOH-terminal domains for interactions with the nucleoprotein (N) but only the COOH terminus for interactions with itself.

A mammalian two-hybrid system was used to characterize protein-protein interactions between the measles virus nucleoprotein (N) and phosphoprotein (P). Progressive deletions at both the amino- and carboxy-termini of P facilitated the mapping of two distinct domains on P that are important for interaction with N: (i) a domain mapping predominantly within the C-terminal 100 amino acids and (ii) a...

متن کامل

Dengue virus type-3 envelope protein domain III; expression and immunogenicity

Objective(s): Production of a recombinant and immunogenic antigen using dengue virus type-3 envelope protein is a key point in dengue vaccine development and diagnostic researches. The goals of this study were providing a recombinant protein from dengue virus type-3 envelope protein and evaluation of its immunogenicity in mice. Materials and Methods: Multiple amino acid sequences of different i...

متن کامل

Cloning and molecular characterization of TaERF6, a gene encoding a bread wheat ethylene response factor

Ethylene response factor proteins are important for regulating gene expression under different stresses. Different isoforms for ERF have previously isolated from bread wheat (Triticum aestivum L.) and related genera and called from TaERF1 to TaERF5. We isolated, cloned and molecular characterized a novel one based on TdERF1, an isoform in durum wheat (Tri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 78 21  شماره 

صفحات  -

تاریخ انتشار 2004