Halothane inhibits two components of calcium current in clonal (GH3) pituitary cells.

نویسندگان

  • J Herrington
  • R C Stern
  • A S Evers
  • C J Lingle
چکیده

The effect of halothane on isolated calcium (Ca2+) current of clonal (GH3) pituitary cells was investigated using standard whole-cell clamp techniques at room temperature. Halothane (0.1-5.0 mM) reversibly reduced both the low-threshold, transient [low-voltage-activated (LVA)] component and the high-threshold [high-voltage-activated (HVA)] component of Ca2+ current. Halothane had little effect on the voltage dependence of activation or inactivation of either component of Ca2+ current. Inhibition of the peak high-threshold Ca2+ current was half-maximal at about 0.8 mM halothane, with maximal inhibition (100%) occurring with 5 mM halothane. When measured at the end of a 190-msec command step, half-maximal reduction of high-threshold current occurred at less than 0.5 mM halothane. The low-threshold transient current was less sensitive to halothane, with half-maximal inhibition of peak transient current activated at -30 mV occurring at approximately 1.3 mM. The effect of halothane on the HVA current was apparently not mediated by changes in intracellular Ca2+ concentration. The ability of halothane to inhibit Ca2+ current was unaffected by either the inclusion of the rapid Ca2+ buffer 1,2-bis(2-aminophenoxy)ethane N,N,N',N'-tetraacetic acid (BAPTA) in the recording pipette or exposure of the cell to 10 mM caffeine. To assess the selectivity of the effect of halothane, the actions of halothane on two components of voltage-activated potassium (K+) current observed in the absence of extracellular Ca2+ and on voltage-dependent sodium (Na+) current were also examined. Halothane had no effect on the voltage-dependent, inactivating K+ current of GH3 cells at concentrations up to 1.2 mM. In contrast, the non-inactivating K+ current, though less sensitive to halothane than either Ca2+ current, was reduced by about 40% by 1.2 mM halothane at +20 mV. Peak Na+ current was also blocked by halothane, but 50% block required around 2.6 mM halothane with little effect at 1.6 mM. Reduction of Na+ current was associated with a substantial negative shift in the steady-state inactivation curve. Although the results indicate that a number of voltage-dependent ionic currents are sensitive to halothane, both components of Ca2+ current exhibit a greater sensitivity to halothane than any of three other voltage-dependent currents in GH3 cells. These results show that GH3 cell Ca2+ currents are selectively inhibited by clinically appropriate concentrations of halothane and that the reduction of Ca2+ current can account for the inhibition by halothane of TRH- or KCl-induced prolactin secretion in GH3 cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The action of halothane on stimulus-secretion coupling in clonal (GH3) pituitary cells.

The effect of halothane on the physiological response to excitatory stimuli was assessed in clonal (GH3) pituitary cells. Halothane, at concentrations used to produce general anesthesia in animals (0.25-0.76 mM), inhibited thyrotropin-releasing hormone (TRH)-induced prolactin (PRL) secretion. The sustained (extracellular calcium-dependent) phase of PRL secretion was 70 +/- 7% inhibited by the h...

متن کامل

Pectic Acid Effects on Prolactin Secretion in GH3/B6 Rat Pituitary Cell Line

Background: Pectic acid extracted from plants increases the secretion of prolactin (PRL) when injected intravenously into ewes or fed to rats. Fragments of ewe hypophysis and lactating rabbit mammary gland incubated in vitro in the presence of pectic acid secreted more PRL and caseins compared to the controls. However, it is not known whether pectic acid directly stimulates PRL secretion in pi...

متن کامل

Ionic currents in two strains of rat anterior pituitary tumor cells

The ionic conductance mechanisms underlying action potential behavior in GH3 and GH4/C1 rat pituitary tumor cell lines were identified and characterized using a patch electrode voltage-clamp technique. Voltage-dependent sodium, calcium, and potassium currents and calcium-activated potassium currents were present in the GH3 cells. GH4/C1 cells possess much less sodium current, less voltage-depen...

متن کامل

Bay K 8644 reveals two components of L-type Ca2+ channel current in clonal rat pituitary cells

Whole-cell L-type Ca2+ channel current was recorded in GH3 clonal rat pituitary cells using Ba2+ as a charge carrier. In the presence of the dihydropyridine agonist Bay K 8644, deactivation was best described by two exponential components with time constants of approximately 2 and approximately 8 ms when recorded at -40 mV. The slow component activated at more negative potentials than the fast ...

متن کامل

Thyrotropin-releasing hormone increases cytosolic free Ca2+ in clonal pituitary cells (GH3 cells): direct evidence for the mobilization of cellular calcium

Changes in the cytosolic free Ca2+ concentration following cell surface receptor activation have been proposed to mediate a wide variety of cellular responses. Using the specific Ca2+ chelator quin2 as a fluorescent intracellular probe, we measured the Ca2+ levels in the cytosol of clonal rat pituitary cells, GH3 cells. We demonstrate that thyrotropin-releasing hormone (TRH) at nanomolar concen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 11 7  شماره 

صفحات  -

تاریخ انتشار 1991