Vertex BIMAGIC Total Labeling for BISTAR Bn,n
نویسندگان
چکیده
A vertex bimagic total labeling on a graph with v vertices and e edges is a one to one map taking the vertices and edges onto the integers 1, 2, 3, ...v + e with the property that the sum of the label on the vertex and the labels of its incident edges is one of the constants k1 or k2, independent of the choice of the vertex. In this paper we have discussed that bistar Bn,n are vertex bimagic total labeling for odd n>1 and even n>2.
منابع مشابه
Vertex Bimagic Total Labeling for Graphs
A vertex magic total labeling on a graph with v vertices and e edges is a one to one map taking the vertices and edges onto the integers with the property that the sum of the label on the vertex and the labels of its incident edges is a constant, independent of the choice of the vertex. A graph with vertex magic total labeling with two constants or is called a vertex bimagic total labeling. The...
متن کاملGraceful and odd graceful labeling of some graphs
In this paper, we prove that the square graph of bistar Bn,n, the splitting graph of Bn,n and the splitting graph of star K1,n are graceful graphs. We also prove that the splitting graph and the shadow graph of bistar Bn,n admit odd graceful labeling.
متن کاملNew Constructions of Edge Bimagic Graphs from Magic Graphs
An edge magic total labeling of a graph G(V,E) with p vertices and q edges is a bijection f from the set of vertices and edges to such that for every edge uv in E, f(u) + f(uv) + f(v) is a constant k. If there exist two constants k1 and k2 such that the above sum is either k1 or k2, it is said to be an edge bimagic total labeling. A total edge magic (edge bimagic) graph is called a super edge m...
متن کاملRemainder Cordial Labeling of Graphs
In this paper we introduce remainder cordial labeling of graphs. Let $G$ be a $(p,q)$ graph. Let $f:V(G)rightarrow {1,2,...,p}$ be a $1-1$ map. For each edge $uv$ assign the label $r$ where $r$ is the remainder when $f(u)$ is divided by $f(v)$ or $f(v)$ is divided by $f(u)$ according as $f(u)geq f(v)$ or $f(v)geq f(u)$. The function$f$ is called a remainder cordial labeling of $G$ if $left| e_{...
متن کامل$k$-Total difference cordial graphs
Let $G$ be a graph. Let $f:V(G)to{0,1,2, ldots, k-1}$ be a map where $k in mathbb{N}$ and $k>1$. For each edge $uv$, assign the label $left|f(u)-f(v)right|$. $f$ is called a $k$-total difference cordial labeling of $G$ if $left|t_{df}(i)-t_{df}(j)right|leq 1$, $i,j in {0,1,2, ldots, k-1}$ where $t_{df}(x)$ denotes the total number of vertices and the edges labeled with $x$.A graph with admits a...
متن کامل