Access of the substrate to the active site of squalene and oxidosqualene cyclases: comparative inhibition, site-directed mutagenesis and homology-modelling studies.
نویسندگان
چکیده
Substrate access to the active-site cavity of squalene-hopene cyclase from Alicyclobacillus acidocaldarious and lanosterol synthase [OSC (oxidosqualene cyclase)] from Saccharomyces cerevisiae was studied by an inhibition, mutagenesis and homology-modelling approach. Crystal structure and homology modelling indicate that both enzymes possess a narrow constriction that separates an entrance lipophilic channel from the active-site cavity. The role of the constriction as a mobile gate that permits substrate passage was investigated by experiments in which critically located Cys residues, either present in native protein or inserted by site-directed mutagenesis, were labelled with specifically designed thiol-reacting molecules. Some amino acid residues of the yeast enzyme, selected on the basis of sequence alignment and a homology model, were individually replaced by residues bearing side chains of different lengths, charges or hydrophobicities. In some of these mutants, substitution severely reduced enzymatic activity and thermal stability. Homology modelling revealed that in these mutants some critical stabilizing interactions could no longer occur. The possible critical role of entrance channel and constriction in specific substrate recognition by eukaryotic OSC is discussed.
منابع مشابه
Characterization of the Channel Constriction Allowing the Access of the Substrate to the Active Site of Yeast Oxidosqualene Cyclase
In oxidosqualene cyclases (OSCs), an enzyme which has been extensively studied as a target for hypocholesterolemic or antifungal drugs, a lipophilic channel connects the surface of the protein with the active site cavity. Active site and channel are separated by a narrow constriction operating as a mobile gate for the substrate passage. In Saccharomyces cerevisiae OSC, two aminoacidic residues ...
متن کاملMechanism-Based Studies of the Active Site-Directed Inhibition and Activation of Enzyme Transketolase
Derivatives of phenyl-keto butenoic acids have been reported to be inhibitors of pyruvate decarboxylase, (PDC). The inhibition of transketolase, a thiamine requiring enzyme such as PDF, by meta nitrophenyl derivative of 2-oxo-3-butenoic acid (MNPB) is reported here. These studies indicate that the inhibitor binds to the enzyme at the active site. A two-step inhibition was observed, first th...
متن کاملActivation-independent cyclization of monoterpenoids.
The biosynthesis of cyclic monoterpenes (C(10)) generally requires the cyclization of an activated linear precursor (geranyldiphosphate) by specific terpene cyclases. Cyclic triterpenes (C(30)), on the other hand, originate from the linear precursor squalene by the action of squalene-hopene cyclases (SHCs) or oxidosqualene cyclases (OSCs). Here, we report a novel terpene cyclase from Zymomonas ...
متن کاملMechanistic insights into oxidosqualene cyclizations through homology modeling
2,3-Oxidosqualene cyclases (OSC) are key enzymes in sterol biosynthesis. They catalyze the stereoselective cyclization and skeletal rearrangement of (3S)-2,3-oxidosqualene to lanosterol in mammals and fungi and to cycloartenol in algae and higher plants. Sequence information and proposed mechanism of 2,3-oxidosqualene cyclases are closely related to those of squalene-hopene cyclases (SHC), whic...
متن کاملConstruction of a recombinant vector for site-directed mutagenesis in Salmonella typhimurium
BACKGROUND: Among all common techniques in sitedirectedmutagenesis, λ Red recombinase system has beenwidely used to knock out chromosomal genes in bacteria. In thismethod, there is always the risk of DNA Linear digestion byhost's restriction enzymes that leads to the low frequency ofrecombination. OBJECTIVES:To overcome this, we constructeda recombinant vector to disrupt phoP gene in Salmonella...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical Society transactions
دوره 33 Pt 5 شماره
صفحات -
تاریخ انتشار 2005