GALLEX, a measurement of heterologous association of transmembrane helices in a biological membrane.
نویسندگان
چکیده
Whereas a variety of two-hybrid systems are available to measure the interaction of soluble proteins, related methods are significantly less developed for the measurement of membrane protein interactions. Here we present a two-hybrid system to follow the heterodimerization of membrane proteins in the Escherichia coli inner membrane. The method is based on the repression of a reporter gene activity by two LexA DNA binding domains with different DNA binding specificities. When coupled to transmembrane domains, heterodimeric association is reported by repression of beta-galactosidase synthesis. The LexA-transmembrane chimeric proteins were found to correctly insert into the membrane, and reproducible signals were obtained measuring the homodimerization as well as heterodimerization of wild-type and mutant glycophorin A transmembrane helices. The GALLEX data were compared with data recently gained by other methods and discussed in the general context of heteroassociation of single TM helices. Additionally, the formation of heterodimers between the TM domains of the alpha(4) and the beta(7) integrin subunits were tested. The results show that both homo- and heterodimerization of membrane proteins can be measured accurately using the GALLEX system.
منابع مشابه
In Silico and in Vitroinvestigations on cry4aand cry11atoxins of Bacillus thuringiensis var Israelensis
In the present study we attempted to correlate the structure and function of the cry11a (72 kDa) and cry4a (135 kDa) proteins of Bacillus thuringiensis var israelensis. Homology modeling and secondary structure predictions were done to locate most probable regions for finding helices or strands in these proteins. The JPRED (JPRED consensus secondary structure prediction server) secondary struct...
متن کاملG-protein Coupled Receptor Dimerization
A growing body of evidence suggests that GPCRs exist and function as dimers or higher oligomers. The evidence for GPCR dimerization comes from biochemical, biophysical and functional studies. In addition, researchers have shown the occurrence of heterodimerization between different members of the GPCR family. Two receptors can interact with each other to make a dimer through their extracellular...
متن کاملMutation effect on number distribution of transmembrane helices in total proteome of Drosophila melanogaster
The strategy for the survival of a biological organism is closely related to the distribution of proteins in various families. As for membrane proteins, it is believed that the members of the same family usually have the same number of transmembrane helices. For example, G-protein coupled receptors form a large superfamily, most of which have seven transmembrane helices. Therefore, the number d...
متن کاملThe stability of transmembrane helix interactions measured in a biological membrane.
Despite some promising progress in the understanding of membrane protein folding and assembly, there is little experimental information regarding the thermodynamic stability of transmembrane helix interactions and even less on the stability of transmembrane helix-helix interactions in a biological membrane. Here we describe an approach that allows quantitative measurement of transmembrane helix...
متن کاملConformational changes in BID, a pro-apoptotic BCL-2 family member, upon membrane binding. A site-directed spin labeling study.
The BCL-2 family proteins constitute a critical control point in apoptosis. BCL-2 family proteins display structural homology to channel-forming bacterial toxins, such as colicins, transmembrane domain of diphtheria toxin, and the N-terminal domain of delta-endotoxin. By analogy, it has been hypothesized the BCL-2 family proteins would unfold and insert into the lipid bilayer upon membrane asso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 278 5 شماره
صفحات -
تاریخ انتشار 2003