Mean Width of Regular Polytopes and Expected Maxima of Correlated Gaussian Variables

نویسندگان

  • ZAKHAR KABLUCHKO
  • ALEXANDER E. LITVAK
  • DMITRY ZAPOROZHETS
چکیده

An old conjecture states that among all simplices inscribed in the unit sphere the regular one has the maximal mean width. An equivalent formulation is that for any centered Gaussian vector (ξ1, . . . , ξn) satisfying Eξ2 1 = · · · = Eξ2 n = 1 one has E max{ξ1, . . . , ξn} ≤ √ n n− 1 E max{η1, . . . , ηn}, where η1, η2, . . . , are independent standard Gaussian variables. Using this probabilistic interpretation we derive an asymptotic version of the conjecture. We also show that the mean width of the regular simplex with 2n vertices is remarkably close to the mean width of the regular crosspolytope with the same number of vertices. Interpreted probabilistically, our result states that 1 ≤ E max{|η1|, . . . , |ηn|} E max{η1, . . . , η2n} ≤ min {√ 2n 2n− 1 , 1 + C n logn } , where C > 0 is an absolute constant. We also compute the higher moments of the projection length W of the regular cube, simplex and crosspolytope onto a line with random direction, thus proving several formulas conjectured by S. Finch. Finally, we prove distributional limit theorems for the length of random projection as the dimension goes to ∞. In the case of the ndimensional unit cube Qn, we prove that WQn − √ 2n π d −→ n→∞ N ( 0, π − 3 π ) , whereas for the simplex and the crosspolytope the limiting distributions are related to the Gumbel double exponential law. 1. Conjecture on the mean width 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Around the simplex mean width conjecture

In this note we discuss an old conjecture in Convex Geometry asserting that the regular simplex has the largest mean width among all simplices inscribed into the Euclidean ball and its relation to Information Theory. Equivalently, in the language of Gaussian processes, the conjecture states that the expectation of the maximum of n + 1 standard Gaussian variables is maximal when the expectations...

متن کامل

Typical Faces of Best Approximating Three – Polytopes

For a given convex body K in R with C boundary, let P i n be the inscribed polytope of maximal volume with at most n vertices, and let P c (n) be the circumscribed polytope of minimal volume with at most n faces. We prove that typical faces of P i n are close to regular triangles in a suitable sense, and typical faces of P c (n) are close to regular hexagons in a suitable sense. We prove the an...

متن کامل

On Expected Gaussian Random Determinants

The expectations of random determinants whose entries are real-valued, identically distributed, mean zero, correlated Gaussian random variables are examined using the Kronecker tensor products and some combinatorial arguments. This result is used to derive the expected determinants of X +B and AX +X ′B.

متن کامل

Expected Number of Local Maxima of Some Gaussian Random Polynomials

Let Qn(x) = ∑n i=0 Aix i be a random algebraic polynomial where the coefficients A0, A1, · · · form a sequence of centered Gaussian random variables. Moreover, assume that the increments ∆j = Aj − Aj−1, j = 0, 1, 2, · · · are independent, A−1 = 0. The coefficients can be considered as n consecutive observations of a Brownian motion. We study the asymptotic behaviour of the expected number of lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016