Evolutionary game theory and multi-agent reinforcement learning
نویسندگان
چکیده
In this paper we survey the basics of Reinforcement Learning and (Evolutionary) Game Theory, applied to the field of Multi-Agent Systems. This paper contains three parts. We start with an overview on the fundamentals of Reinforcement Learning. Next we summarize the most important aspects of Evolutionary Game Theory. Finally, we discuss the state-of-the-art of Multi-Agent Reinforcement Learning and the mathematical connection with Evolutionary Game Theory.
منابع مشابه
An Evolutionary Game Theoretic Perspective on Learning in Multi-Agent Systems
In this paper we revise Reinforcement Learning and adaptiveness in Multi-Agent Systems from an Evolutionary Game Theoretic perspective. More precisely we show there is a triangular relation between the fields of Multi-Agent Systems, Reinforcement Learning and Evolutionary Game Theory. We illustrate how these new insights can contribute to a better understanding of learning in MAS and to new imp...
متن کاملTowards a Relation Between Learning Agents and Evolutionary Dynamics
Modeling learning agents in the context of Multi-agent Systems requires insight in the type and form of interactions with the environment and other agents in the system. Usually, these agents are modeled similar to the different players in a standard game theoretical model. In this paper we examine whether evolutionary game theory, and more specifically the replicator dynamics, is an adequate t...
متن کاملروشهای مدلسازی تطوری در اقتصاد (با تاکید بر عناصر مشترک سازنده آنها)
In this paper we have tried mention to some sort of thewell-known evolutionary modeling approaches in economic territory such as Multi Agent simulations, Evolutionary Computation and Evolutionary Game Theory. As it has been mentioned in the paper, in recent years, the number of Evolutionary contributions applied to Multi-Agent models increased remarkably. However until now there is no consensus...
متن کاملEvolutionary Dynamics of Multi-Agent Learning: A Survey
The interaction of multiple autonomous agents gives rise to highly dynamic and nondeterministic environments, contributing to the complexity in applications such as automated financial markets, smart grids, or robotics. Due to the sheer number of situations that may arise, it is not possible to foresee and program the optimal behaviour for all agents beforehand. Consequently, it becomes essenti...
متن کاملanalyzing Reinforcement Learning algorithms using Evolutionary Game Theory
The cover image visualizes several learning trajectories of Lenient Frequency Adjusted Q-learning in the Matching Pennies game, together with the dynamics of its evolutionary model. This image is related to the experiments described in Section 6.1. Acknowledgments A master's thesis is not something that suddenly springs into existence. Not completely unrelated to my research, I came to think of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Knowledge Eng. Review
دوره 20 شماره
صفحات -
تاریخ انتشار 2005