A Wavelet-Based Image Denoising Technique Using Spatial Priors
نویسندگان
چکیده
We propose a new wavelet-based method for image denoising that applies the Bayesian framework, using prior knowledge about the spatial clustering of the wavelet coefficients. Local spatial interactions of the wavelet coefficients are modeled by adopting a Markov Random Field model. An iterative updating technique known as iterated conditional modes (ICM) is applied to estimate the binary masks containing the positions of those wavelet coefficients that represent the useful signal in each subband. For each wavelet coefficient a shrinkage factor is determined, depending on its magnitude and on the local spatial neighbourhood in the estimated mask. We derive analytically a closed form expression for this shrinkage factor.
منابع مشابه
Statistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...
متن کاملBayesian wavelet-based image estimation using noninformative priors
The sparseness and decorrelation properties of the discrete wavelet transform have been exploited to develop powerful denoising methods. Most schemes use arbitrary thresholding nonlinearities with ad hoc parameters, or employ computationally expensive adaptive procedures. We overcome these de ciencies with a new wavelet-based denoising technique derived from a simple empirical Bayes approach ba...
متن کاملComparative Analysis of Image Denoising Methods Based on Wavelet Transform and Threshold Functions
There are many unavoidable noise interferences in image acquisition and transmission. To make it better for subsequent processing, the noise in the image should be removed in advance. There are many kinds of image noises, mainly including salt and pepper noise and Gaussian noise. This paper focuses on the research of the Gaussian noise removal. It introduces many wavelet threshold denoising alg...
متن کاملAn Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising
MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...
متن کاملDenoising of multicomponent images using wavelet least-squares estimators
In this paper, we study denoising of multicomponent images. The presented procedures are spatial wavelet-based denoising techniques, based on Bayesian leastsquares optimization procedures, using prior models for the wavelet coefficients that account for the correlations between the spectral bands. We analyze three mixture priors: Gaussian scale mixture models, Bernoulli-Gaussian mixture models ...
متن کامل