Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations

نویسندگان

  • Alexander Kurganov
  • Sebastian Noelle
  • Guergana Petrova
چکیده

We introduce new Godunov-type semidiscrete central schemes for hyperbolic systems of conservation laws and Hamilton–Jacobi equations. The schemes are based on the use of more precise information about the local speeds of propagation and can be viewed as a generalization of the schemes from [A. Kurganov and E. Tadmor, J. Comput. Phys., 160 (2000), pp. 241–282; A. Kurganov and D. Levy, SIAM J. Sci. Comput., 22 (2000), pp. 1461–1488; A. Kurganov and G. Petrova, A third-order semidiscrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems, Numer. Math., to appear] and [A. Kurganov and E. Tadmor, J. Comput. Phys., 160 (2000), pp. 720–742]. The main advantages of the proposed central schemes are the high resolution, due to the smaller amount of the numerical dissipation, and the simplicity. There are no Riemann solvers and characteristic decomposition involved, and this makes them a universal tool for a wide variety of applications. At the same time, the developed schemes have an upwind nature, since they respect the directions of wave propagation by measuring the one-sided local speeds. This is why we call them central-upwind schemes. The constructed schemes are applied to various problems, such as the Euler equations of gas dynamics, the Hamilton–Jacobi equations with convex and nonconvex Hamiltonians, and the incompressible Euler and Navier–Stokes equations. The incompressibility condition in the latter equations allows us to treat them both in their conservative and transport form. We apply to these problems the central-upwind schemes, developed separately for each of them, and compute the corresponding numerical solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

Alternating Evolution Schemes for Hamilton-Jacobi Equations

In this work, we propose a high-resolution alternating evolution (AE) scheme to solve Hamilton–Jacobi equations. The construction of the AE scheme is based on an alternating evolution system of the Hamilton–Jacobi equation, following the idea previously developed for hyperbolic conservation laws. A semidiscrete scheme derives directly from a sampling of this system on alternating grids. Higher ...

متن کامل

Nonoscillatory Central Schemes for Hyperbolic Systems of Conservation Laws in Three-Space Dimensions

We extend a family of high-resolution, semidiscrete central schemes for hyperbolic systems of conservation laws to three-space dimensions. Details of the schemes, their implementation, and properties are presented together with results from several prototypical applications of hyperbolic conservation laws including a nonlinear scalar equation, the Euler equations of gas dynamics, and the ideal ...

متن کامل

A Central Discontinuous Galerkin Method for Hamilton-Jacobi Equations

In this paper, a central discontinuous Galerkin method is proposed to solve for the viscosity solutions of Hamilton-Jacobi equations. Central discontinuous Galerkin methods were originally introduced for hyperbolic conservation laws. They combine the central scheme and the discontinuous Galerkin method and therefore carry many features of both methods. Since Hamilton-Jacobi equations in general...

متن کامل

High order relaxation schemes for non linear diffusion problems

Several relaxation approximations to partial differential equations have been recently proposed. Examples include conservation laws, Hamilton-Jacobi equations, convection-diffusion problems, gas dynamics problems. The present paper focuses onto diffusive relaxation schemes for the numerical approximation of nonlinear parabolic equations. These schemes are based on suitable semilinear hyperbolic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2001