A Density Functional Theory Study of the Adsorption of Benzene on Hematite (α-Fe2O3) Surfaces
نویسندگان
چکیده
The reactivity of mineral surfaces in the fundamental processes of adsorption, dissolution or growth, and electron transfer is directly tied to their atomic structure. However, unraveling the relationship between the atomic surface structure and other physical and chemical properties of complex metal oxides is challenging due to the mixed ionic and covalent bonding that can occur in these minerals. Nonetheless, with the rapid increase in computer processing speed and memory, computer simulations using different theoretical techniques can now probe the nature of matter at both the atomic and sub-atomic levels and are rapidly becoming an effective and quantitatively accurate method for successfully predicting structures, properties and processes occurring at mineral surfaces. In this study, we have used Density Functional Theory calculations to study the adsorption of benzene on hematite (α-Fe2O3) surfaces. The strong electron correlation effects of the Fe 3d-electrons in α-Fe2O3 were described by a Hubbard-type on-site Coulomb repulsion (the DFT+U approach), which was found to provide an accurate description of the electronic and magnetic properties of hematite. For the adsorption of benzene on the hematite surfaces, we show that the adsorption geometries parallel to the surface are energetically more stable than the vertical ones. The benzene molecule interacts with the hematite surfaces through π-bonding in the parallel adsorption geometries and through weak hydrogen bonds in the vertical geometries. Van der Waals interactions are found to play a significant role in stabilizing the absorbed benzene molecule. Analyses of the electronic structures reveal that upon benzene adsorption, the conduction band edge of the surface atoms is shifted towards the valence bands, thereby considerably reducing the band gap and the magnetic moments of the surface Fe atoms. OPEN ACCESS
منابع مشابه
Accelerating the search for global minima on potential energy surfaces using machine learning.
Controlling molecule-surface interactions is key for chemical applications ranging from catalysis to gas sensing. We present a framework for accelerating the search for the global minimum on potential surfaces, corresponding to stable adsorbate-surface structures. We present a technique using Bayesian inference that enables us to predict converged density functional theory potential energies wi...
متن کاملA Study of Effects of Different Surface Modifications of MWCNTs on their Adsorption Capacity of Benzene and Toluene
Multi-Walled Carbon Nanotubes (MWCNTs) surfaces were serially modified by the annealing treatment under Helium flow at 1000oC, the nitric acid treatment and again the annealing treatment under same conditions and their maximum adsorption capacities for benzene and toluene were measured and analyzed. The unmodified and modified MWCNTs werecharacterized by Fourier Tr...
متن کاملAdsorption of V on a hematite (0001) surface and its oxidation: Monolayer coverage
The adsorption of a monolayer of V on idealized Feand oxygen-terminated hematite (0001) surfaces and subsequent oxidation under atomic O adsorption are studied by density functional theory. Theoretical results are compared with X-ray surface standing wave and X-ray photoelectron spectroscopic measurements, and interpreted in the light of data on sub-monolayer coverages. Near-surface Fe reductio...
متن کاملWater adsorption and O-defect formation on Fe2O3(0001) surfaces.
The stability and reactivity of the hematite, Fe2O3(0001) surface are studied by density functional theory including an on-site Coulomb term (DFT+U). Even under oxygen rich conditions, the metal-terminated surface is shown to be stable. On this surface termination, the isolated water molecule forms a heterolytically dissociated structure with the OH- group attached to a surface Fe3+ ion and the...
متن کاملTiO2/Graphene oxide nanocomposite as an ideal NO gas sensor: A density functional theory study
We performed a density functional theory investigation on the structural and electronic properties of pristine and nitrogen-doped TiO2/Graphene oxide nanocomposites as the adsorbents for the removal of toxic NO molecules in the environment. We presented the most stable adsorption configurations and examined the interaction of NO molecule with these doped and undoped nanocomposites. It turns out...
متن کامل