Nonlinear System Identification and Control Using an Input-Output Recurrent Neurofuzzy Network
نویسندگان
چکیده
In this work we develop an input-output recurrent neurofuzzy network in discretetime for identification and control of nonlinear systems. The structure is linear in the consequent parameters and nonlinear in the antecedent ones. The training of the antecedent parameters is achieved by linearizing them around a suboptimal value, assuming that the only known data are input-output signals obtained directly from measurements of the system, as well as some information about its structure (local stability and time delays). The training algorithm is based on a Kalman filter, stable under certain assumptions. It is also presented a theorem to check the stability of the resulting network in the Lyapunov sense, and a predictive control design. The performance of the network is shown by the identification and control of a nonlinear benchmark system.
منابع مشابه
Identification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network
Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...
متن کاملDistillation Column Identification Using Artificial Neural Network
 Abstract: In this paper, Artificial Neural Network (ANN) was used for modeling the nonlinear structure of a debutanizer column in a refinery gas process plant. The actual input-output data of the system were measured in order to be used for system identification based on root mean square error (RMSE) minimization approach. It was shown that the designed recurrent neural network is able to pr...
متن کاملNonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms
Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...
متن کاملReal-Time Output Feedback Neurolinearization
An adaptive input-output linearization method for general nonlinear systems is developed without using states of the system. Another key feature of this structure is the fact that, it does not need model of the system. In this scheme, neurolinearizer has few weights, so it is practical in adaptive situations. Online training of neuroline...
متن کاملA Neurofuzzy Learning and its Application to Control System
A neurofuzzy approach for a given set of input-output training data is proposed in two phases. Firstly, the data set is partitioned automatically into a set of clusters. Then a fuzzy if-then rule is extracted from each cluster to form a fuzzy rule base. Secondly, a fuzzy neural network is constructed accordingly and parameters are tuned to increase the precision of the fuzzy rule base. This net...
متن کامل