Of Some Ruin Theory Results B ¥
نویسندگان
چکیده
The paper deals with the renewal equation governing the infinite-time ruin probability. It is emphasized as intended to be no more than a pleasant ramble through a few scattered results. An interesting connection between ruin probability and a recurslon formula for computation of the aggregate claims distribution is noted and discussed. The relation between danger of the claim size distribution and ruin probability is reexamined in the light of some recent results on stochastic dominance. Finally, suggestions are made as to the way in which the formula for ruin probability leads easily to conclusions about the effect on that probability of the Iong-tailedness of the claim size distribution. Stable distributions, in particular, are examined.
منابع مشابه
The time to ruin for a class of Markov additive risk processes
Risk processes are considered, which locally behave as a Brownian motion with some drift and variance, both depending on an underlying Markov chain that is used also to generate the claims arrival process. Thus claims arrive according to a renewal process with waiting times of phase-type. The claims are assumed to form an iid sequence, independent of everything else, and with a distribution wit...
متن کاملNumerical solution of some first order integro-differential equations arising in ultimate ruin theory
This paper presents models of ultimate ruin theory in the form of 1st order integro-differential equations and systems of such equations (cf. Albrecher and Boxma (2004), Dickson and Gray (1984), Lin, Willmot and Drekic (2003)), and gives some numerical results obtained from the direct solution of one of them (Albrecher and Boxma (2004)).
متن کاملSome statistical estimation problems in ruin theory
Much research in ruin theory in insurance mathematics focuses on the behaviour of various quantities of interest, such as the probability of ruin or the ruin-time moments, for a particular risk model in insurance. In practice, precise knowledge of the risk model is available only via observed data. In this presentation, the problem of statistical estimation of the quantities of interest, given ...
متن کاملRefracted Lévy processes and ruin . May 15 , 2008
Motivated by classical considerations from the theory of risk theory we investigate the problem of ruin for a so-called refracted Lévy process. The latter is a Lévy processes whose dynamics change by subtracting off a fixed linear drift (of suitable size) whenever the aggregate process is above a pre-specified level. More formally, whenever it exists, a refracted Lévy process is described by th...
متن کاملAsymptotics for the infinite time ruin probability of a dependent risk model with a constant interest rate and dominatedly varying-tailed claim sizes
This paper mainly considers a nonstandard risk model with a constant interest rate, where both the claim sizes and the inter-arrival times follow some certain dependence structures. When the claim sizes are dominatedly varying-tailed, asymptotics for the infinite time ruin probability of the above dependent risk model have been given.
متن کامل