High-Order AFEM for the Laplace-Beltrami Operator: Convergence Rates
نویسندگان
چکیده
We present a new AFEM for the Laplace-Beltrami operator with arbitrary polynomial degree on parametric surfaces, which are globally W 1 ∞ and piecewise in a suitable Besov class embedded in C1,α with α ∈ (0, 1]. The idea is to have the surface sufficiently well resolved in W 1 ∞ relative to the current resolution of the PDE in H1. This gives rise to a conditional contraction property of the PDE module. We present a suitable approximation class and discuss its relation to Besov regularity of the surface, solution, and forcing. We prove optimal convergence rates for AFEM which are dictated by the worst decay rate of the surface error in W 1 ∞ and PDE error in H 1.
منابع مشابه
Convergence of Adaptive Finite Element Methods
Title of dissertation: CONVERGENCE OF ADAPTIVE FINITE ELEMENT METHODS Khamron Mekchay, Doctor of Philosophy, 2005 Dissertation directed by: Professor Ricardo H. Nochetto Department of Mathematics We develop adaptive finite element methods (AFEMs) for elliptic problems, and prove their convergence, based on ideas introduced by Dörfler [7], and Morin, Nochetto, and Siebert [15, 16]. We first stud...
متن کاملApplication of Adaptive Finite Element Method for Elliptic Partial Differential Equations to the Laplace Beltrami Operator on Graphs
The Laplace Beltrami operator, known as an elliptic operator for functions defined on surfaces, appears in some applications in sciences and engineerings. In this paper we consider the Laplace Beltrami operator ∆Γ on surfaces Γ defined as graphs of C2 functions on a flat domain Ω ⊂ Rd−1 (d ≥ 2), ∆Γu = f on Γ, u = 0 on ∂Γ. Based on some properties of differential geometry, we transformed the Lap...
متن کاملHigh-order algorithms for solving eigenproblems over discrete surfaces
The eigenvalue problem of the Laplace-Beltrami operators on curved surfaces plays an essential role in the convergence analysis of the numerical simulations of some important geometric partial differential equations which involve this operator. In this note we shall combine the local tangential lifting (LTL) method with the configuration equation to develop a new effective and convergent algori...
متن کاملAFEM for the Laplace-Beltrami operator on graphs: Design and conditional contraction property
We present an adaptive finite element method (AFEM) of any polynomial degree for the Laplace-Beltrami operator on C graphs Γ in R (d ≥ 2). We first derive residual-type a posteriori error estimates that account for the interaction of both the energy error in H(Γ) and the surface error in W 1 ∞(Γ) due to approximation of Γ. We devise a marking strategy to reduce the total error estimator, namely...
متن کاملLaplace-Beltrami operator on Digital Curves
Many problems in image analysis, digital processing and shape optimization are expressed as variational problems and involve the discritization of laplacians. Indeed, PDEs containing Laplace-Beltrami operator arise in surface fairing, mesh smoothing, mesh parametrization, remeshing, feature extraction, shape matching, etc. The discretization of the laplace-Beltrami operator has been widely stud...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Foundations of Computational Mathematics
دوره 16 شماره
صفحات -
تاریخ انتشار 2016