High-Order AFEM for the Laplace-Beltrami Operator: Convergence Rates

نویسندگان

  • Andrea Bonito
  • José Manuel Cascón
  • Khamron Mekchay
  • Pedro Morin
  • Ricardo H. Nochetto
چکیده

We present a new AFEM for the Laplace-Beltrami operator with arbitrary polynomial degree on parametric surfaces, which are globally W 1 ∞ and piecewise in a suitable Besov class embedded in C1,α with α ∈ (0, 1]. The idea is to have the surface sufficiently well resolved in W 1 ∞ relative to the current resolution of the PDE in H1. This gives rise to a conditional contraction property of the PDE module. We present a suitable approximation class and discuss its relation to Besov regularity of the surface, solution, and forcing. We prove optimal convergence rates for AFEM which are dictated by the worst decay rate of the surface error in W 1 ∞ and PDE error in H 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of Adaptive Finite Element Methods

Title of dissertation: CONVERGENCE OF ADAPTIVE FINITE ELEMENT METHODS Khamron Mekchay, Doctor of Philosophy, 2005 Dissertation directed by: Professor Ricardo H. Nochetto Department of Mathematics We develop adaptive finite element methods (AFEMs) for elliptic problems, and prove their convergence, based on ideas introduced by Dörfler [7], and Morin, Nochetto, and Siebert [15, 16]. We first stud...

متن کامل

Application of Adaptive Finite Element Method for Elliptic Partial Differential Equations to the Laplace Beltrami Operator on Graphs

The Laplace Beltrami operator, known as an elliptic operator for functions defined on surfaces, appears in some applications in sciences and engineerings. In this paper we consider the Laplace Beltrami operator ∆Γ on surfaces Γ defined as graphs of C2 functions on a flat domain Ω ⊂ Rd−1 (d ≥ 2), ∆Γu = f on Γ, u = 0 on ∂Γ. Based on some properties of differential geometry, we transformed the Lap...

متن کامل

High-order algorithms for solving eigenproblems over discrete surfaces

The eigenvalue problem of the Laplace-Beltrami operators on curved surfaces plays an essential role in the convergence analysis of the numerical simulations of some important geometric partial differential equations which involve this operator. In this note we shall combine the local tangential lifting (LTL) method with the configuration equation to develop a new effective and convergent algori...

متن کامل

AFEM for the Laplace-Beltrami operator on graphs: Design and conditional contraction property

We present an adaptive finite element method (AFEM) of any polynomial degree for the Laplace-Beltrami operator on C graphs Γ in R (d ≥ 2). We first derive residual-type a posteriori error estimates that account for the interaction of both the energy error in H(Γ) and the surface error in W 1 ∞(Γ) due to approximation of Γ. We devise a marking strategy to reduce the total error estimator, namely...

متن کامل

Laplace-Beltrami operator on Digital Curves

Many problems in image analysis, digital processing and shape optimization are expressed as variational problems and involve the discritization of laplacians. Indeed, PDEs containing Laplace-Beltrami operator arise in surface fairing, mesh smoothing, mesh parametrization, remeshing, feature extraction, shape matching, etc. The discretization of the laplace-Beltrami operator has been widely stud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Foundations of Computational Mathematics

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016