Synergistic antioxidative effect of astaxanthin and tocotrienol by co-encapsulated in liposomes
نویسندگان
چکیده
Astaxanthin and vitamin E are both effective antioxidants that are frequently used in cosmetics, as food additives, and in to prevent oxidative damage. A combination of astaxanthin and vitamin E would be expected to show an additive anntioxidative effect. In this study, liposomes co-encapsulating astaxanthin and the vitamin E derivatives α-tocopherol (α-T) or tocotrienols (T3) were prepared, and the antioxidative activity of these liposomes toward singlet oxygen and hydroxyl radical was evaluated in vitro. Liposomes co-encapsulating astaxanthin and α-T showed no additive anntioxidative effect, while the actual scavenging activity of liposomes co-encapsulating astaxanthin and T3 was higher than the calculated additive activity. To clarify why this synergistic effect occurs, the most stable structure of astaxanthin in the presence of α-T or α-T3 was calculated. Only α-T3 was predicted to form hydrogen bonding with astaxanthin, and the astaxanthin polyene chain would partially interact with the α-T3 triene chain, which could explain why there was a synergistic effect between astaxanthin and T3 but not α-T. In conclusion, co-encapsulation of astaxanthin and T3 induces synergistic scavenging activity by intermolecular interactions between the two antioxidants.
منابع مشابه
Mucosal Adjuvant Potential of Quillaja saponins and Cross-linked Dextran Microspheres, Co-administered with Liposomes Encapsulated with Tetanus Toxoid
Intranasal vaccination is particularly a striking route for mucosal immunization, due to the ease of administration and the induction of both mucosal and humoral immunity. However, soluble antigens (Ag) are not sufficiently taken up after the nasal administration and need to be co-administered with adjuvants, penetration enhancers or encapsulated in particles. So, in this study, tetanus toxoid ...
متن کاملMucosal Adjuvant Potential of Quillaja saponins and Cross-linked Dextran Microspheres, Co-administered with Liposomes Encapsulated with Tetanus Toxoid
Intranasal vaccination is particularly a striking route for mucosal immunization, due to the ease of administration and the induction of both mucosal and humoral immunity. However, soluble antigens (Ag) are not sufficiently taken up after the nasal administration and need to be co-administered with adjuvants, penetration enhancers or encapsulated in particles. So, in this study, tetanus toxoid ...
متن کاملAstaxanthin and peridinin inhibit oxidative damage in Fe(2+)-loaded liposomes: scavenging oxyradicals or changing membrane permeability?
Astaxanthin and peridinin, two typical carotenoids of marine microalgae, and lycopene were incorporated in phosphatidylcholine multilamellar liposomes and tested as inhibitors of lipid oxidation. Contrarily to peridinin results, astaxanthin strongly reduced lipid damage when the lipoperoxidation promoters-H(2)O(2), tert-butyl hydroperoxide (t-ButOOH) or ascorbate-and Fe(2+):EDTA were added simu...
متن کاملRGD-Modified Nano-Liposomes Encapsulated Eptifibatide with Proper Hemocompatibility and Cytotoxicity Effect
Background: Eptifibatide (Integrilin®) is a hepta-peptide drug which specifically prevents the aggregation of activated platelets. The peptide drugs are encapsulated into nanolipisomes in order to decreasing their side effects and improving their half-life and bioavailability. Objectives: In this study, the in vitro cytotoxicity and hemocompatibi...
متن کاملHuman Erythrocyte Superoxide Dismutase Encapsulated in Positively Charged Liposomes
Superoxide dismutase (SOD) is an important antioxidant that protects many types of cells from the free radical damage. One of the possible ways for the use of SOD is its incorporation in liposomes. The aim of this study was to investigate the effect of cationic phospholipids on the entrapment of human erythrocyte superoxide dismutase (Cu/Zn SOD) in liposomes. Also, in the present study, w...
متن کامل