Injectable Dopamine-Modified Poly(ethylene glycol) Nanocomposite Hydrogel with Enhanced Adhesive Property and Bioactivity
نویسندگان
چکیده
A synthetic mimic of mussel adhesive protein, dopamine-modified four-armed poly(ethylene glycol) (PEG-D4), was combined with a synthetic nanosilicate, Laponite (Na(0.7+)(Mg5.5Li0.3Si8)O20(OH)4)(0.7-)), to form an injectable naoncomposite tissue adhesive hydrogel. Incorporation of up to 2 wt % Laponite significantly reduced the cure time while enhancing the bulk mechanical and adhesive properties of the adhesive due to strong interfacial binding between dopamine and Laponite. The addition of Laponite did not alter the degradation rate and cytocompatibility of PEG-D4 adhesive. On the basis of subcutaneous implantation in rat, PEG-D4 nanocomposite hydrogels elicited minimal inflammatory response and exhibited an enhanced level of cellular infiltration as compared to Laponite-free samples. The addition of Laponite is potentially a simple and effective method for promoting bioactivity in a bioinert, synthetic PEG-based adhesive while simultaneously enhancing its mechanical and adhesive properties.
منابع مشابه
Gelatin Microgel Incorporated Poly(ethylene glycol)-Based Bioadhesive with Enhanced Adhesive Property and Bioactivity
Up to 7.5 wt % of chemically cross-linked gelatin microgel was incorporated into dopamine-modified poly(ethylene glycol) (PEGDM) adhesive to simultaneously improve the material property and bioactivity of the PEG-based bioadhesive. Incorporation of gelatin microgel reduced cure time while it increased the elastic modulus and cross-linking density of the adhesive network. Most notably, the loss ...
متن کاملGelatin Microgel Incorporated Poly (ethylene Glycol) Bioadhesive with Enhanced Adhesive Property and Bioactivity
متن کامل
Enhanced Mechanical Properties in Cellulose Nanocrystal-Poly(oligoethylene glycol methacrylate) Injectable Nanocomposite Hydrogels through Control of Physical and Chemical Cross-Linking.
While injectable hydrogels have several advantages in the context of biomedical use, their generally weak mechanical properties often limit their applications. Herein, we describe in situ-gelling nanocomposite hydrogels based on poly(oligoethylene glycol methacrylate) (POEGMA) and rigid rod-like cellulose nanocrystals (CNCs) that can overcome this challenge. By physically incorporating CNCs int...
متن کاملTransparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles.
The structures and mechanical properties of both physically and covalently cross-linked nanocomposite hydrogels made from poly(ethylene glycol) (PEG) and silicate nanoparticles (Laponite RD) are investigated. Injectable nanocomposite precursor solutions can be covalently cross-linked via photopolymerization. The resulting hydrogels are transparent and have interconnected pores, high elongation ...
متن کاملAdhesion and migration of marrow-derived osteoblasts on injectable in situ crosslinkable poly(propylene fumarate-co-ethylene glycol)-based hydrogels with a covalently linked RGDS peptide.
Marrow-derived osteoblasts were cultured on poly(propylene fumarate-co-ethylene glycol) (P(PF-co-EG)) based hydrogels modified in bulk with a covalently linked RGDS model peptide. A poly(ethylene glycol) spacer arm was utilized to covalently link the peptide to the hydrogel. Three P(PF-co-EG) block copolymers were synthesized with varying poly(ethylene glycol) block lengths relative to poly(eth...
متن کامل