Singular Measures and the Little Bloch Space
نویسندگان
چکیده
Aleksandrov, Anderson and Nicolau have found examples of inner functions that are in the little Bloch space with a specific rate of convergence to zero. As a corollary they obtain positive singular measures defined in the boundary of the unit disc that are simoultaneously symmetric and Kahane. Nevertheless their construction is very indirect. We give an explicit example of such measures by means of a martingale argument.
منابع مشابه
Inner Functions in the Hyperbolic Little Bloch Class
An analytic function φ mapping the unit disk into itself is said to belong to the hyperbolic little Bloch class if the ratio (1−|z|2)|φ′(z)|/(1−|φ(z)|2) converges to 0 as |z| → 1, while φ is in the little Bloch space if just the numerator of this expression converges to zero. Several constructions of inner functions in the little Bloch space have recently appeared. In this paper we construct a ...
متن کاملEssential norm of generalized composition operators from weighted Dirichlet or Bloch type spaces to Q_K type spaces
In this paper we obtain lower and upper estimates for the essential norms of generalized composition operators from weighted Dirichlet spaces or Bloch type spaces to $Q_K$ type spaces.
متن کاملAn Aharonov-Bohm interferometer for determining Bloch band topology.
The geometric structure of a single-particle energy band in a solid is fundamental for a wide range of many-body phenomena and is uniquely characterized by the distribution of Berry curvature over the Brillouin zone. We realize an atomic interferometer to measure Berry flux in momentum space, in analogy to an Aharonov-Bohm interferometer that measures magnetic flux in real space. We demonstrate...
متن کاملMore about measures and Jacobians of singular random matrices
In this work are studied the Jacobians of certain singular transformations and the corresponding measures which support the jacobian computations.
متن کاملGeneralized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces
Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...
متن کامل