Balanced Boosting with Parallel Perceptrons

نویسندگان

  • Iván Cantador
  • José R. Dorronsoro
چکیده

Boosting constructs a weighted classifier out of possibly weak learners by successively concentrating on those patterns harder to classify. While giving excellent results in many problems, its performance can deteriorate in the presence of patterns with incorrect labels. In this work we shall use parallel perceptrons (PP), a novel approach to the classical committee machines, to detect whether a pattern’s label may not be correct and also whether it is redundant in the sense of being well represented in the training sample by many other similar patterns. Among other things, PP allow to naturally define margins for hidden unit activations, that we shall use to define the above pattern types. This pattern type classification allows a more nuanced approach to boosting. In particular, the procedure we shall propose, balanced boosting, uses it to modify boosting distribution updates. As we shall illustrate numerically, balanced boosting gives very good results on relatively hard classification problems, particularly in some that present a marked imbalance between class sizes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boosting Parallel Perceptrons for Label Noise Reduction in Classification Problems

Boosting combines an ensemble of weak learners to construct a new weighted classifier that is often more accurate than any of its components. The construction of such learners, whose training sets depend on the performance of the previous members of the ensemble, is carried out by successively focusing on those patterns harder to classify. This fact deteriorates boosting’s results when dealing ...

متن کامل

Parallel Perceptrons and Training Set Selection for Imbalanced Classification Problems

Parallel perceptrons are a novel approach to the study of committee machines that allows, among other things, for a fast training with minimal communications between outputs and hidden units. Moreover, their training allows to naturally define margins for hidden unit activations. In this work we shall show how to use those margins to perform subsample selections over a given training set that r...

متن کامل

Boosting and Naive Bayesian Learning

Although so-called “naive” Bayesian classification makes the unrealistic assumption that the values of the attributes of an example are independent given the class of the example, this learning method is remarkably successful in practice, and no uniformly better learning method is known. Boosting is a general method of combining multiple classifiers due to Yoav Freund and Rob Schapire. This pap...

متن کامل

Statistical Mechanics of Mutual Learning with a Latent Teacher

We propose a mutual learning with a latent teacher within the framework of on-line learning, and have analyzed its dynamical behavior through the statistical mechanics method. The proposed model consists of two learning steps: two students independently learn from a teacher, and then the students learn from each other through the mutual learning. A teacher is not used in the mutual learning, so...

متن کامل

Generalization in Threshold Networks, Combined Decision Trees and Combined Mask Perceptrons

We derive an upper bound on the generalization error of classi ers from a certain class of threshold networks. The bound depends on the margin of the classi er and the average complexity of the hidden units (where the average is over the weights assigned to each hidden unit). By representing convex combinations of decision trees or mask perceptrons as such threshold networks we obtain similar b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005