Linear Algorithms for Chordal Graphs of Bounded Directed Vertex Leafage

نویسندگان

  • Michel Habib
  • Juraj Stacho
چکیده

The directed vertex leafage of a chordal graph G is the smallest integer k such that G is the intersection graph of subtrees of a rooted directed tree where each subtree has at most k leaves. In this note, we show how to find in time O(kn) an optimal colouring, a maximum independent set, a maximum clique, and an optimal clique cover of an n-vertex chordal graph G with directed vertex leafage k if a representation of G is given. In particular, this implies that for any path graph G, the four problems can be solved in time O(n) given a path representation of G.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The vertex leafage of chordal graphs

Every chordal graph G can be represented as the intersection graph of a collection of subtrees of a host tree, a so-called tree model of G. The leafage l(G) of a connected chordal graph G is the minimum number of leaves of the host tree of a tree model of G and the vertex leafage vl(G) is the smallest number k such that there exists a tree model of G in which every subtree has at most k leaves....

متن کامل

The leafage of a chordal graph

The leafage l(G) of a chordal graph G is the minimum number of leaves of a tree in which G has an intersection representation by subtrees. We obtain upper and lower bounds on l(G) and compute it on special classes. The maximum of l(G) on n-vertex graphs is n − lg n− 1 2 lg lg n+O(1). The proper leafage l(G) is the minimum number of leaves when no subtree may contain another; we obtain upper and...

متن کامل

Complement of Special Chordal Graphs and Vertex Decomposability

In this paper, we introduce a subclass of chordal graphs which contains $d$-trees and show that their complement are vertex decomposable and so is shellable and sequentially Cohen-Macaulay.

متن کامل

Acyclic Colorings and Triangulations of Weakly Chordal Graphs

An acyclic coloring of a graph is a proper vertex coloring without bichromatic cycles. We show that the acyclic colorings of any weakly chordal graph G correspond to the proper colorings of triangulations of G. As a consequence, we obtain polynomial-time algorithms for the acyclic coloring problem and the perfect phylogeny problem on the class of weakly chordal graphs. Our results also imply li...

متن کامل

Chordal bipartite graphs of bounded tree- and clique-width

A bipartite graph is chordal bipartite if every cycle of length at least six has a chord. In the class of chordal bipartite graphs the tree-width and the clique-width are unbounded. Our main results are that chordal bipartite graphs of bounded vertex degree have bounded tree-width and that k-fork-free chordal bipartite graphs have bounded clique-width, where a k-fork is the graph arising from a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2009