Pseudodifferential operators and weighted normed symbol spaces
نویسنده
چکیده
In this work we study some general classes of pseudodifferential operators where the classes of symbols are defined in terms of phase space estimates. Résumé On étudie des classes générales d’opérateurs pseudodifférentiels dont les classes de symboles sont définis en termes d’éstimations dans l’espace de phase.
منابع مشابه
Modulation Spaces as Symbol Classes for Pseudodifferential Operators
We investigate the Weyl calculus of pseudodifferential operators with the methods of time-frequency analysis. As symbol classes we use the modulation spaces, which are the function spaces associated to the short-time Fourier transform and the Wigner distribution. We investigate the boundedness and Schatten-class properties of pseudodifferential operators, and furthermore we study their mapping ...
متن کاملPublications, Sorted by Subject
[4] D. Haroske. Some logarithmic function spaces, entropy numbers, applications to spectral theory. [9] D. Haroske and H. Triebel. Entropy numbers in weighted function spaces and eigenvalue distribution of some degenerate pseudodifferential operators I. [10] D. Haroske and H. Triebel. Entropy numbers in weighted function spaces and eigenvalue distribution of some degenerate pseudodifferential o...
متن کاملA Transformation of Almost Periodic Pseudodifferential Operators to Fourier Multiplier Operators with Operator-valued Symbols
We present results for pseudodifferential operators on Rd whose symbol a(·,ξ) is almost periodic (a.p.) for each ξ ∈ Rd and belongs to a Hörmander class Sm ρ,δ. We study a linear transformation a 7→ U(a) from a symbol a(x,ξ) to a frequency-dependent matrix U(a)(ξ)λ,λ′ , indexed by (λ,λ′) ∈ Λ×Λ where Λ is a countable set in Rd . The map a 7→ U(a) transforms symbols of a.p. pseudodifferential ope...
متن کاملBounded H∞-calculus for Pseudodifferential Operators and Applications to the Dirichlet-neumann Operator
Operators of the form A = a(x,D) +K with a pseudodifferential symbol a(x, ξ) belonging to the Hörmander class Sm 1,δ, m > 0, 0 ≤ δ < 1, and certain perturbations K are shown to possess a bounded H∞-calculus in Besov-Triebel-Lizorkin and certain subspaces of Hölder spaces, provided a is suitably elliptic. Applications concern pseudodifferential operators with mildly regular symbols and operators...
متن کامل2 00 6 Pseudodifferential Operators on Locally Compact Abelian Groups and Sjöstrand ’ s Symbol Class
We investigate pseudodifferential operators on arbitrary locally compact abelian groups. As symbol classes for the Kohn-Nirenberg calculus we introduce a version of Sjöstrand’s class. Pseudodifferential operators with such symbols form a Banach algebra that is closed under inversion. Since “hard analysis” techniques are not available on locally compact abelian groups, a new time-frequency appro...
متن کامل