Explicit Least-Degree Boundary Filters for Discontinuous Galerkin
نویسندگان
چکیده
Convolving the output of Discontinuous Galerkin (DG) computations using spline filters can improve both smoothness and accuracy of the output. At domain boundaries, these filters have to be one-sided for non-periodic boundary conditions. Recently, position-dependent smoothness-increasing accuracy-preserving (PSIAC) filters were shown to be a superset of the well-known one-sided RLKV and SRV filters. Since PSIAC filters can be formulated symbolically, PSIAC filtering amounts to forming linear products with local DG output and so offers a more stable and efficient implementation. The paper introduces a new class of PSIAC filters NP0 that have small support and are piecewise constant. Extensive numerical experiments for the canonical hyperbolic test equation show NP0 filters outperform the more complex known boundary filters. NP0 filters typically reduce the L∞ error in the boundary region below that of the interior where optimally superconvergent symmetric filters of the same support are applied. NP0 filtering can be implemented as forming linear combinations of the data with short rational weights. Exact derivatives of the convolved output are easy to compute.
منابع مشابه
Explicit Finite Element Methods for Symmetric Hyperbolic Equations∗
A family of explicit space-time finite element methods for the initial boundary value problem for linear, symmetric hyperbolic systems of equations is described and analyzed. The method generalizes the discontinuous Galerkin method and, as is typical for this method, obtains error estimates of order O(hn+1/2) for approximations by polynomials of degree ≤ n.
متن کاملA fast, p-Multigrid Discontinuous Galerkin Method for Compressible Flows at All Speeds
A p-multigrid (p=polynomial degree) discontinuous Galerkin method is presented for the solution of the compressible Euler equations on unstructured grids. The method operates on a sequence of solution approximations of different polynomial orders. A distinct feature of this p-multigrid method is the application of an explicit smoother on the higher level approximations (p > 0) and an implicit s...
متن کاملThird order implicit-explicit Runge-Kutta local discontinuous Galerkin methods with suitable boundary treatment for convection-diffusion problems with Dirichlet boundary conditions
To avoid the order reduction when third order implicit-explicit Runge-Kutta time discretization is used together with the local discontinuous Galerkin (LDG) spatial discretization, for solving convection-diffusion problems with time-dependent Dirichlet boundary conditions, we propose a strategy of boundary treatment at each intermediate stage in this paper. The proposed strategy can achieve opt...
متن کاملSmoothness-Increasing Accuracy-Conserving (SIAC) filters for derivative approximations of discontinuous Galerkin (DG) solutions over nonuniform meshes and near boundaries
8 Accurate approximations for the derivatives are usually required in many application areas such as biomechanics, chemistry and visualization applications. With the help of Smoothness-Increasing AccuracyConserving (SIAC) filtering, one can enhance the derivatives of a discontinuous Galerkin solution. However, current investigations of derivative filtering are limited to uniform meshes and peri...
متن کاملDiscontinuous Galerkin Finite Element Approximation of Quasilinear Elliptic Boundary Value Problems Ii: Strongly Monotone Quasi-newtonian Flows
In this article we develop both the a priori and a posteriori error analysis of hp– version interior penalty discontinuous Galerkin finite element methods for strongly monotone quasi-Newtonian fluid flows in a bounded Lipschitz domain Ω ⊂ R, d = 2, 3. In the latter case, computable upper and lower bounds on the error are derived in terms of a natural energy norm which are explicit in the local ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM journal on scientific computing : a publication of the Society for Industrial and Applied Mathematics
دوره 39 4 شماره
صفحات -
تاریخ انتشار 2017