BRCA1 facilitates microhomology-mediated end joining of DNA double strand breaks.
نویسندگان
چکیده
BRCA1 is critical for the maintenance of genomic stability, in part through its interaction with the Rad50.Mre11.Nbs1 complex, which occupies a central role in DNA double strand break repair mediated by nonhomologous end joining (NHEJ) and homologous recombination. BRCA1 has been shown to be required for homology-directed recombination repair. However, the role of BRCA1 in NHEJ, a critical pathway for the repair of double strand breaks and genome stability in mammalian cells, remains elusive. Here, we established a pair of mouse embryonic fibroblasts (MEFs) derived from 9.5-day-old embryos with genotypes Brca1(+/+):p53(-/-) or Brca1(-/-):p53(-/-). The Brca1(-/-):p53(-/-) MEFs appear to be extremely sensitive to ionizing radiation. The contribution of BRCA1 in NHEJ was evaluated in these cells using three different assay systems. First, transfection of a linearized plasmid in which expression of the reporter gene required precise end joining indicated that Brca1(-/-) MEFs display a moderate deficiency when compared with Brca1(+/+) cells. Second, using a retrovirus infection assay dependent on NHEJ, a 5-10-fold reduction in retroviral integration efficiency was observed in Brca1(-/-) MEFs when compared with the Brca1(+/+) MEFs. Third, Brca1(-/-) MEFs exhibited a 50-100-fold deficiency in microhomology-mediated end-joining activity of a defined chromosomal DNA double strand break introduced by a rare cutting endonuclease I-SceI. These results provide evidence that Brca1 has an essential role in microhomology-mediated end joining and suggest a novel molecular basis for its caretaker role in the maintenance of genome integrity.
منابع مشابه
A role for human homologous recombination factors in suppressing microhomology-mediated end joining
DNA double-strand breaks (DSBs) are toxic lesions, which if improperly repaired can result in cell death or genomic instability. DSB repair is usually facilitated by the classical non-homologous end joining (C-NHEJ), or homologous recombination (HR) pathways. However, a mutagenic alternative NHEJ pathway, microhomology-mediated end joining (MMEJ), can also be deployed. While MMEJ is suppressed ...
متن کامل53BP1 promotes microhomology-mediated end-joining in G1-phase cells
Alternative non-homologous end joining (alt-NHEJ) was originally identified as a backup repair mechanism in the absence of classical NHEJ (c-NHEJ) factors but recent studies have demonstrated that alt-NHEJ is active even when c-NHEJ as well as homologous recombination is available. The functions of 53BP1 in NHEJ processes are not well understood. Here, we report that 53BP1 promotes DNA double-s...
متن کاملSaccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining.
Microhomology-mediated end joining (MMEJ) joins DNA ends via short stretches [5-20 nucleotides (nt)] of direct repeat sequences, yielding deletions of intervening sequences. Non-homologous end joining (NHEJ) and single-strand annealing (SSA) are other error prone processes that anneal single-stranded DNA (ssDNA) via a few bases (<5 nt) or extensive direct repeat homologies (>20 nt). Although th...
متن کاملHuman DNA ligases I and III, but not ligase IV, are required for microhomology-mediated end joining of DNA double-strand breaks
DNA nonhomologous end-joining (NHEJ) and homologous recombination are two distinct pathways of DNA double-strand break repair in mammalian cells. Biochemical and genetic studies showed that DNA ends can also be joined via microhomology-mediated end joining (MHEJ), especially when proteins responsible for NHEJ, such as Ku, are reduced or absent. While it has been known that Ku-dependent NHEJ req...
متن کاملMicrohomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions
Mitochondrial DNA (mtDNA) deletions are associated with various mitochondrial disorders. The deletions identified in humans are flanked by short, directly repeated mitochondrial DNA sequences; however, the mechanism of such DNA rearrangements has yet to be elucidated. In contrast to nuclear DNA (nDNA), mtDNA is more exposed to oxidative damage, which may result in double-strand breaks (DSBs). A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 277 32 شماره
صفحات -
تاریخ انتشار 2002