Using the L{curve for Determining Optimal Regularization Parameters

نویسندگان

  • Heinz W. Engl
  • Wilhelm Grever
چکیده

The \L{curve" is a plot (in ordinary or doubly{logarithmic scale) of the norm of (Tikhonov{) regularized solutions of an ill{posed problem versus the norm of the residuals. We show that the popular criterion of choosing the parameter corresponding to the point with maximal curvature of the L{curve does not yield a convergent regularization strategy to solve the ill{posed problem. Nevertheless, the L{curve can be used to compute the regularization parameters produced by Morozov's discrepancy principle and by an order{optimal variant of the discrepancy principle proposed by Engl and Gfrerer in an alternate way.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Mathematical Analysis of New L-curve to Estimate the Parameters of Regularization in TSVD Method

A new technique to find the optimization parameter in TSVD regularization method is based on a curve which is drawn against the residual norm [5]. Since the TSVD regularization is a method with discrete regularization parameter, then the above-mentioned curve is also discrete. In this paper we present a mathematical analysis of this curve, showing that the curve has L-shaped path very similar t...

متن کامل

Boundary temperature reconstruction in an inverse heat conduction problem using boundary integral equation method

‎In this paper‎, ‎we consider an inverse boundary value problem for two-dimensional heat equation in an annular domain‎. ‎This problem consists of determining the temperature on the interior boundary curve from the Cauchy data (boundary temperature and heat flux) on the exterior boundary curve‎. ‎To this end‎, ‎the boundary integral equation method is used‎. ‎Since the resulting system of linea...

متن کامل

A Method for Choosing the Regularization Parameter in Generalized Tikhonov Regularized Linear Inverse Problems

This paper presents a systematic and computable method for choosing the regularization parameter appearing in Tikhonov-type regularization based on non-quadratic regularizers. First, we extend the notion of the L-curve, originally defined for quadratically regularized problems, to the case of non-quadratic functions. We then associate the optimal value of the regularization parameter for these ...

متن کامل

An Analysis of the Zero-Crossing Method for Choosing Regularization Parameters

Solving discrete ill-posed problems via Tikhonov regularization introduces the problem of determining a regularization parameter. There are several methods available for choosing such a parameter, yet, in general, the uniqueness of this choice is an open question. Two empirical methods for determining a regularization parameter (which appear in the biomedical engineering literature) are the com...

متن کامل

Efficient Determination of Multiple Regularization Parameters in a Generalized L-curve Framework

The selection of multiple regularization parameters is considered in a generalized L-curve framework. Multiple-dimensional extensions of the L-curve for selecting multiple regularization parameters are introduced, and a minimum distance function (MDF) is developed for approximating the regularization parameters corresponding to the generalized corner of the L-hypersurface. For the single-parame...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994