Sink fast and swim harder! Round-trip cost-of-transport for buoyant divers.

نویسندگان

  • Patrick J O Miller
  • Martin Biuw
  • Yuuki Y Watanabe
  • Dave Thompson
  • Mike A Fedak
چکیده

Efficient locomotion between prey resources at depth and oxygen at the surface is crucial for breath-hold divers to maximize time spent in the foraging layer, and thereby net energy intake rates. The body density of divers, which changes with body condition, determines the apparent weight (buoyancy) of divers, which may affect round-trip cost-of-transport (COT) between the surface and depth. We evaluated alternative predictions from external-work and actuator-disc theory of how non-neutral buoyancy affects round-trip COT to depth, and the minimum COT speed for steady-state vertical transit. Not surprisingly, the models predict that one-way COT decreases (increases) when buoyancy aids (hinders) one-way transit. At extreme deviations from neutral buoyancy, gliding at terminal velocity is the minimum COT strategy in the direction aided by buoyancy. In the transit direction hindered by buoyancy, the external-work model predicted that minimum COT speeds would not change at greater deviations from neutral buoyancy, but minimum COT speeds were predicted to increase under the actuator disc model. As previously documented for grey seals, we found that vertical transit rates of 36 elephant seals increased in both directions as body density deviated from neutral buoyancy, indicating that actuator disc theory may more closely predict the power requirements of divers affected by gravity than an external work model. For both models, minor deviations from neutral buoyancy did not affect minimum COT speed or round-trip COT itself. However, at body-density extremes, both models predict that savings in the aided direction do not fully offset the increased COT imposed by the greater thrusting required in the hindered direction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The foraging benefits of being fat in a highly migratory marine mammal.

Foraging theory predicts that breath-hold divers adjust the time spent foraging at depth relative to the energetic cost of swimming, which varies with buoyancy (body density). However, the buoyancy of diving animals varies as a function of their body condition, and the effects of these changes on swimming costs and foraging behaviour have been poorly examined. A novel animal-borne accelerometer...

متن کامل

Energy cost and optimisation in breath-hold diving.

We present a new model for calculating locomotion costs in breath-hold divers. Starting from basic mechanics principles, we calculate the work that the diver must provide through propulsion to counterbalance the action of drag, the buoyant force and weight during immersion. Compared to those in previous studies, the model presented here accurately analyses breath-hold divers which alternate act...

متن کامل

Scaling of swim speed and stroke frequency in geometrically similar penguins: they swim optimally to minimize cost of transport.

It has been predicted that geometrically similar animals would swim at the same speed with stroke frequency scaling with mass(-1/3). In the present study, morphological and behavioural data obtained from free-ranging penguins (seven species) were compared. Morphological measurements support the geometrical similarity. However, cruising speeds of 1.8-2.3 m s(-1) were significantly related to mas...

متن کامل

Time Indicators of Pre-hospital Emergency Services in Ardabil, 2020

Objective: Considering the importance of the role and function of emergency medical services(EMS) in a society’s health and the need for continuously evaluating its function, especially in indices affecting the process of giving service to the patients, the present study was done with the aim of was to determine the time indicators of  EMS in Ardabil. Materials &Methods: This study was a retro...

متن کامل

Locomotion and foraging strategy in foot-propelled and wing-propelled shallow-diving seabirds

Buoyancy is a major determinant of locomotory cost in diving animals. As seabirds have a large amount of air in their feathers and respiratory system, they should work hard against buoyancy to descend in the water column. Since buoyancy decreases with increasing hydrostatic pressure, shallow divers, especially, should work against buoyancy during both the descent and bottom phases of their dive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 215 Pt 20  شماره 

صفحات  -

تاریخ انتشار 2012