Functional interaction between TRPV1 and mu-opioid receptors in the descending antinociceptive pathway activates glutamate transmission and induces analgesia.
نویسندگان
چکیده
The transient receptor potential vanilloid-1 (TRPV1) receptor is involved in peripheral and spinal nociceptive processing and is a therapeutic target for pain. We have shown previously that TRPV1 in the ventrolateral periaqueductal gray (VL-PAG) tonically contributes to brain stem descending antinociception by stimulating glutamate release into the rostral ventromedial medulla and off neuron activity. Because both opioid and vanilloid systems integrate and transduce pain sensation in these pathways, we studied the potential interaction between TRPV1 and mu-opioid receptors in the VL-PAG-rostral ventromedial medulla (RVM) system. We found that the TRPV1 agonist, capsaicin, and the mu-receptor agonist [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]enkephalin, when coadministered into the ventrolateral-PAG at doses nonanalgesic per se, produce 1) antinociception in tests of thermal nociception; 2) stimulation of glutamate release into the RVM; and 3) inhibition of on neuron activity in the RVM. These effects were all antagonized by the TRPV1 and opioid receptor antagonists 5'-iodo-resiniferatoxin and naloxone, respectively, thus suggesting the existence of a TRPV1-mu-opioid interaction in the VL-PAG-RVM system. By using double immunofluorescence techniques, we found that TRPV1 and mu-opioid receptors are coexpressed in several neurons of the VL-PAG. These findings suggest that mu-receptor activation not only acts on inhibitory neurons to disinhibit PAG output neurons but also interacts with TRPV1 activation at increasing glutamate release into the RVM, possibly by acting directly on PAG output neurons projecting to the RVM.
منابع مشابه
Functional interaction between TRPV1 and μ-opioid receptors in descending antinociceptive pathway activates glutamate transmission and induces analgesia
The transient receptor potential vanilloid-1 (TRPV1) receptor is involved in peripheral and spinal nociceptive processing and is a therapeutic target for pain. We have shown previously that TRPV1 in the ventrolateral periaqueductal grey (VL-PAG) tonically contributes to brainstem descending antinociception by stimulating glutamate release into the rostral ventromedial medulla and OFF neuron act...
متن کاملMoving towards supraspinal TRPV1 receptors for chronic pain relief
Transient receptor potential vanilloid type 1 (TRPV1) receptor is a non selective ligand-gated cation channel activated by capsaicin, heat, protons and endogenous lipids termed endovanilloids. As well as peripheral primary afferent neurons and dorsal root ganglia, TRPV1 receptor is also expressed in spinal and supraspinal structures such as those belonging to the endogenous antinociceptive desc...
متن کاملLoss of TRPV1-expressing sensory neurons reduces spinal mu opioid receptors but paradoxically potentiates opioid analgesia.
Systemic administration of resiniferatoxin (RTX), an ultrapotent capsaicin analogue, removes transient receptor potential vanilloid type 1 (TRPV1)-expressing afferent neurons and impairs thermal but not mechanical nociception in adult animals. In this study, we determined how loss of TRPV1-expressing sensory neurons alters the antinociceptive effect of mu opioids and mu opioid receptors in the ...
متن کاملCoexpression of delta- and mu-opioid receptors in nociceptive sensory neurons.
Morphine-induced analgesia and antinociceptive tolerance are known to be modulated by interaction between delta-opioid receptors (DORs) and mu-opioid receptors (MORs) in the pain pathway. However, evidence for expression of DORs in nociceptive small-diameter neurons in dorsal root ganglia (DRG) and for coexistence of DORs with MORs and neuropeptides has recently been challenged. We now report, ...
متن کاملSex differences and role of gonadal hormones in development of tolerance to morphine analgesia and glutamate level in the nucleus accumbens of rats: A microdialysis study
Introduction: Sex differences are observed in the development of tolerance to antinociceptive effect of opioid drugs such as morphine, but the underlying mechanisms remain unclear. Critical role of glutamate in the development and maintenance of opioid tolerance has been reported by many investigators. There are also evidences about interaction between gonadal hormones and neuromodulatory sy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 101 5 شماره
صفحات -
تاریخ انتشار 2009