Every 3-connected, essentially 11-connected line graph is Hamiltonian
نویسندگان
چکیده
Thomassen conjectured that every 4-connected line graph is Hamiltonian. A vertex cut X of G is essential if G−X has at least two non-trivial components. We prove that every 3-connected, essentially 11-connected line graph is Hamiltonian. Using Ryjác̆ek’s line graph closure, it follows that every 3-connected, essentially 11-connected claw-free graph is Hamiltonian. © 2005 Elsevier Inc. All rights reserved.
منابع مشابه
Collapsible graphs and Hamiltonian connectedness of line graphs
Thomassen conjectured that every 4-connected line graph is Hamiltonian. Chen and Lai [Z.-H. Chen, H.-J. Lai, Reduction techniques for super-Eulerian graphs and related topics— an update, in: Ku Tung-Hsin (Ed.), Combinatorics and Graph Theory, vol. 95, World Scientific, Singapore/London, 1995, pp. 53–69, Conjecture 8.6] conjectured that every 3-edge connected, essentially 6-edge connected graph ...
متن کاملHamiltonicity of 3-connected line graphs
Thomassen conjectured that every 4-connected line graph is Hamiltonian. Lai et al. conjectured [H. Lai, Y. Shao, H. Wu, J. Zhou, Every 3-connected, essentially 11-connected line graph is Hamiltonian, J. Combin. Theory Ser. B 96 (2006) 571–576] that every 3-connected, essentially 4-connected line graph is Hamiltonian. In this note, we first show that the conjecture posed by Lai et al. is not tru...
متن کاملHamiltonian Connected Line Graphs
Thomassen conjectured [8] that every 4-connected line graph is hamiltonian. An hourglass is a graph isomorphic to K5−E(C), where C is a cycle of length 4 in K5. In [2], it is shown that every 4-connected line graph without an induced subgraph isomorphic to the hourglass is hamiltonian connected. In this note, we prove that every 3-connected, essentially 4-connected hourglass-free line graph is ...
متن کاملHamiltonian connected hourglass free line graphs
Thomassen conjectured [8] that every 4-connected line graph is hamiltonian. An hourglass is a graph isomorphic to K5−E(C4), where C4 is a cycle of length 4 in K5. In [2], it is shown that every 4-connected line graph without an induced subgraph isomorphic to the hourglass is hamiltonian connected. In this note, we prove that every 3-connected, essentially 4-connected hourglass free line graph i...
متن کاملSupereulerian graphs with small circumference and 3-connected hamiltonian claw-free graphs
A graph G is supereulerian if it has a spanning eulerian subgraph. We prove that every 3-edge-connected graph with the circumference at most 11 has a spanning eulerian subgraph if and only if it is not contractible to the Petersen graph. As applications, we determine collections F1, F2 and F3 of graphs to prove each of the following (i) Every 3-connected {K1,3, Z9}-free graph is hamiltonian if ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. B
دوره 96 شماره
صفحات -
تاریخ انتشار 2006