Weighted Integrals of Polynomial Splines

نویسنده

  • Mladen Rogina
چکیده

The construction of weighted splines by knot insertion techniques such as deBoor and Oslo type algorithms leads immediately to the problem of evaluating integrals of polynomial splines with respect to the positive measure possessing piecewise constant density. It is for such purposes that we consider one possible way for simple and fast evaluation of primitives of products of a polynomial B-spline and a positive piecewise constant function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integro-differential polynomial and trigonometrical splines and quadrature formulae

This work is one of many that are devoted to the further investigation of local interpolating polynomial splines of the fifth order approximation. Here, new polynomial and trigonometrical basic splines are presented. The main features of these splines are the following; the approximation is constructed separately for each grid interval (or elementary rectangular), the approximation constructed ...

متن کامل

Using Wavelets and Splines to Forecast Non-Stationary Time Series

 This paper deals with a short term forecasting non-stationary time series using wavelets and splines. Wavelets can decompose the series as the sum of two low and high frequency components. Aminghafari and Poggi (2007) proposed to predict high frequency component by wavelets and extrapolate low frequency component by local polynomial fitting. We propose to forecast non-stationary process u...

متن کامل

Splines in Numerical Integration

We gave a short review of several results which are related to the role of splines (cardinal, centered or interpolating) in numerical integration. Results deal with the problem of approximate computation of the integrals with spline as a weight function, but also with the problem of approximate computation of the integrals without weight function. Besides, we presented an algorithm for calculat...

متن کامل

On Construction of Fourth Order Chebyshev Splines

It is an important fact that general families of Chebyshev and L-splines can be locally represented, i.e. there exists a basis of B-splines which spans the entire space. We develop a special technique to calculate with 4 order Chebyshev splines of minimum deficiency on nonuniform meshes, which leads to a numerically stable algorithm, at least in case one special Hermite interpolant can be const...

متن کامل

TWO LOW-ORDER METHODS FOR THE NUMERICAL EVALUATION OF CAUCHY PRINCIPAL VSlLUE INTEGRALS OF OSCILLATORY KIND

In this paper, we develop two piecewise polynomial methods for the numerical evaluation of Cauchy Principal Value integrals of oscillatory kind. The two piecewisepolynomial quadratures are compact, easy to implement, and are numerically stable. Two numerical examples are presented to illustrate the two rules developed, The convergence of the two schemes is proved and some error bounds obtai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006