Perception of scene-relative object movement: Optic flow parsing and the contribution of monocular depth cues
نویسندگان
چکیده
We have recently suggested that the brain uses its sensitivity to optic flow in order to parse retinal motion into components arising due to self and object movement (e.g. Rushton, S. K., & Warren, P. A. (2005). Moving observers, 3D relative motion and the detection of object movement. Current Biology, 15, R542-R543). Here, we explore whether stereo disparity is necessary for flow parsing or whether other sources of depth information, which could theoretically constrain flow-field interpretation, are sufficient. Stationary observers viewed large field of view stimuli containing textured cubes, moving in a manner that was consistent with a complex observer movement through a stationary scene. Observers made speeded responses to report the perceived direction of movement of a probe object presented at different depths in the scene. Across conditions we varied the presence or absence of different binocular and monocular cues to depth order. In line with previous studies, results consistent with flow parsing (in terms of both perceived direction and response time) were found in the condition in which motion parallax and stereoscopic disparity were present. Observers were poorer at judging object movement when depth order was specified by parallax alone. However, as more monocular depth cues were added to the stimulus the results approached those found when the scene contained stereoscopic cues. We conclude that both monocular and binocular static depth information contribute to flow parsing. These findings are discussed in the context of potential architectures for a model of the flow parsing mechanism.
منابع مشابه
The Primary Role of Flow Processing in the Identification of Scene-Relative Object Movement
Retinal image motion could be due to the movement of the observer through space or an object relative to the scene. Optic flow, form, and change of position cues all provide information that could be used to separate out retinal motion due to object movement from retinal motion due to observer movement. In Experiment 1, we used a minimal display to examine the contribution of optic flow and for...
متن کاملPeripheral Visual Cues Contribute to the Perception of Object Movement During Self-Movement
Safe movement through the environment requires us to monitor our surroundings for moving objects or people. However, identification of moving objects in the scene is complicated by self-movement, which adds motion across the retina. To identify world-relative object movement, the brain thus has to 'compensate for' or 'parse out' the components of retinal motion that are due to self-movement. We...
متن کاملDuring self-movement humans are better at judging whether an object is moving (flow parsing) than whether they will hit it (heading).
During locomotion we can use information in the retinal flow field to judge whether we will pass to the left or right of an object in the scene (heading). We can also use information in retinal flow to judge whether an object is moving relative to the scene (flow parsing). Both judgements rely on the brain identifying optic flow (global patterns of retinal motion that are characteristic of self...
متن کاملThe contribution of monocular depth cues to scene perception by pigeons.
The contributions of different monocular depth cues to performance of a scene perception task were investigated in 4 pigeons. They discriminated the sequential depth ordering of three geometric objects in computer-rendered scenes. The orderings of these objects were specified by the combined presence or absence of the pictorial cues of relative density, occlusion, and relative size. In Phase 1,...
متن کاملThe effect of monocular depth cues on the detection of moving objects by moving observers
An observer moving through the world must be able to identify and locate moving objects in the scene. In principle, one could accomplish this task by detecting object images moving at a different angle or speed than the images of other items in the optic flow field. While angle of motion provides an unambiguous cue that an object is moving relative to other items in the scene, a difference in s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Vision Research
دوره 49 شماره
صفحات -
تاریخ انتشار 2009