On Repeated-root Cyclic Codes

نویسندگان

  • Guy Castagnoli
  • James L. Massey
  • Philipp A. Schoeller
  • Niklaus von Seemann
چکیده

A parity-check matrix for a q -ary repeated-root cyclic code is derived using the Hasse derivative. Then the min imum distance of a q-ary repeated-root cyclic code C is expressecin terms of the min imum distance of a certain simple-root cyclic code C that is determined by C. With the help of this result, several binary repeated-root cyclic codes of lengths up to n = 62 are shown to contain the largest known number of codewords for their given length and min imum distance. It is further shown that to a q-ary repeated-root cyclic code C of length n = p%, where p is the characteristic of GF(q) and gcd(p,?i) = 1, there corre. sponds a simple-root cyclic code C of rate and relative min imum distance at least as large as the corresponding values of C, however, of length ii, i.e., shorter by a factor of p’. The relative min imum distance dmin /n of q-ary repeated-root cyclic codes C of rate r 2 R is proven to tend to zero as the largest multiplicity of a root of the generator g(x) increases to infinity. It is further shown that repeated-root cyclic codes cannot be asymptotically better than simple-root cyclic codes. Mar Terms -Cyclic codes, generator polynomial, formal derivative, Hasse derivative.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Squaring Construction for Repeated-Root Cyclic Codes

We considered repeated-root cyclic codes whose block length is divisible by the characteristic of the underlying field. Cyclic self dual codes are also the repeated root cyclic codes. It is known about the one-level squaring construction for binary repeated root cyclic codes. In this correspondence, we introduced of two level squaring construction for binary repeated root cyclic codes of length...

متن کامل

Repeated-root cyclic and negacyclic codes over a finite chain ring

We show that repeated-root cyclic codes over a finite chain ring are in general not principally generated. Repeated-root negacyclic codes are principally generated if the ring is a Galois ring with characteristic a power of 2. For any other finite chain ring they are in general not principally generated. We also prove results on the structure, cardinality and Hamming distance of repeated-root c...

متن کامل

Repeated-root cyclic and negacyclic codes over a nite chain ring

We show that repeated-root cyclic codes over a finite chain ring are in general not principally generated. Repeated-root negacyclic codes are principally generated if the ring is a Galois ring with characteristic a power of 2. For any other finite chain ring they are in general not principally generated. We also prove results on the structure, cardinality and Hamming distance of repeated-root c...

متن کامل

Decoding of repeated-root cyclic codes up to new bounds on their minimum distance

The well-known approach of Bose, Ray-Chaudhuri and Hocquenghem and its generalization by Hartmann and Tzeng are lower bounds on the minimum distance of simple-root cyclic codes. We generalize these two bounds to the case of repeated-root cyclic codes and present a syndrome-based burst error decoding algorithm with guaranteed decoding radius based on an associated folded cyclic code. Furthermore...

متن کامل

Algebraic Quantum Synchronizable Codes

In this paper, we construct quantum synchronizable codes (QSCs) based on the sum and intersection of cyclic codes. Further, infinite families of QSCs are obtained from BCH and duadic codes. Moreover, we show that the work of Fujiwara [7] can be generalized to repeated root cyclic codes (RRCCs) such that QSCs are always obtained, which is not the case with simple root cyclic codes. The usefulnes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 37  شماره 

صفحات  -

تاریخ انتشار 1991