Multi-Entity Dependence Learning with Rich Context via Conditional Variational Auto-encoder

نویسندگان

  • Luming Tang
  • Yexiang Xue
  • Di Chen
  • Carla P. Gomes
چکیده

Multi-Entity Dependence Learning (MEDL) explores conditional correlations among multiple entities. The availability of rich contextual information requires a nimble learning scheme that tightly integrates with deep neural networks and has the ability to capture correlation structures among exponentially many outcomes. We propose MEDL CVAE, which encodes a conditional multivariate distribution as a generating process. As a result, the variational lower bound of the joint likelihood can be optimized via a conditional variational auto-encoder and trained end-to-end on GPUs. Our MEDL CVAE was motivated by two real-world applications in computational sustainability: one studies the spatial correlation among multiple bird species using the eBird data and the other models multi-dimensional landscape composition and human footprint in the Amazon rainforest with satellite images. We show that MEDL CVAE captures rich dependency structures, scales better than previous methods, and further improves on the joint likelihood taking advantage of very large datasets that are beyond the capacity of previous methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-V-L Deep: A Big Data Analytics Solution for Now-casting in Monetary Policy

The development of new technologies has confronted the entire domain of science and industry with issues of big data's scalability as well as its integration with the purpose of forecasting analytics in its life cycle. In predictive analytics, the forecast of near-future and recent past - or in other words, the now-casting - is the continuous study of real-time events and constantly updated whe...

متن کامل

Salience Estimation via Variational Auto-Encoders for Multi-Document Summarization

We propose a new unsupervised sentence salience framework for Multi-Document Summarization (MDS), which can be divided into two components: latent semantic modeling and salience estimation. For latent semantic modeling, a neural generative model called Variational Auto-Encoders (VAEs) is employed to describe the observed sentences and the corresponding latent semantic representations. Neural va...

متن کامل

Conditional Probability Models for Deep Image Compression

Deep Neural Networks trained as image auto-encoders have recently emerged as a promising direction for advancing the state of the art in image compression. The key challenge in learning such networks is twofold: to deal with quantization, and to control the trade-off between reconstruction error (distortion) and entropy (rate) of the latent image representation. In this paper, we focus on the l...

متن کامل

Human Centred Object Co-Segmentation

Co-segmentation is the automatic extraction of the common semantic regions given a set of images. Different from previous approaches mainly based on object visuals, in this paper, we propose a human centred object co-segmentation approach, which uses the human as another strong evidence. In order to discover the rich internal structure of the objects reflecting their human-object interactions a...

متن کامل

CDVAE: Co-embedding Deep Variational Auto Encoder for Conditional Variational Generation

Problems such as predicting an optical flow field (Y ) for an image (X) are ambiguous: many very distinct solutions are good. Representing this ambiguity requires building a conditional model P (Y |X) of the prediction, conditioned on the image. It is hard because training data usually does not contain many different flow fields for the same image. As a result, we need different images to share...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1709.05612  شماره 

صفحات  -

تاریخ انتشار 2017