Non-Compactness Attribute Filtering to Extract Retinal Blood Vessels in Fundus Images

نویسندگان

  • I. Ketut E. Purnama
  • Kadek Yota E. Aryanto
  • Michael H. F. Wilkinson
چکیده

Retinal blood vessels can give information about abnormalities or disease by examining its pathological changes. One abnormality is diabetic retinopathy, characterized by a disorder of retinal blood vessels resulting from diabetes mellitus. Currently, diabetic retinopathy is one of the major causes of human vision abnormalities and blindness. Hence, early detection can lead to proper treatment, and segmentation of the abnormality provides a map of retinal vessels that can facilitate the assessment of the characteristics of these vessels. In this paper, the authors propose a new method, consisting of a sequence of procedures, to segment blood vessels in a retinal image. In the method, attribute filtering with a so-called Max-Tree is used to represent the image based on its gray value. The filtering process is done using the branches filtering approach in which the tree branches are selected based on the noncompactness of the nodes. The selection is started from the leaves. This experiment was performed on 40 retinal images, and utilized the manual segmentation created by an observer to validate the results. The proposed method can deliver an average accuracy of 94.21%. DOI: 10.4018/978-1-4666-0909-9.ch016

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphological Exudate Detection in Retinal Images using PCA-based Optic Disc Removal

Diabetic retinopathy lesion detection such as exudate in fundus image of retina can lead to early diagnosis of the disease. Retinal image includes dark areas such as main blood vessels and retinal tissue and also bright areas such as optic disk, optical fibers and lesions e.g. exudate. In this paper, a multistage algorithm for the detection of exudate in foreground is proposed. The algorithm se...

متن کامل

Detection of Blood Vessels in Color Fundus Images using a Local Radon Transform

Introduction: This paper addresses a method for automatic detection of blood vessels in color fundus images which utilizes two main tools: image partitioning and local Radon transform. Material and Methods: The input images are firstly divided into overlapping windows and then the Radon transform is applied to each. The maximum of the Radon transform in each window corresponds to the probable a...

متن کامل

Biomedical Engineering for A Better Life

This special issue contains a selection of interesting contribution from academia. Partly of the articles that have been presented in the In the first article, Biosensor Based on Giant Magnetoresistance Material, Djamal et al. demonstrate a comprehensive review on novel approach in biosensor based on GMR material. Compared with the traditional optical detection that widely used in biomedicine, ...

متن کامل

Extracting Vessel Centerlines From Retinal Images Using Topographical Properties and Directional Filters

In this paper we consider the problem of blood vessel segmentation in retinal images. After enhancing the retinal image we use green channel of images for segmentation as it provides better discrimination between vessels and background. We consider the negative of retinal green channel image as a topographical surface and extract ridge points on this surface. The points with this property are l...

متن کامل

Automatic Optic Disc Center and Boundary Detection in Color Fundus Images

Accurately detection of retinal landmarks, like optic disc, is an important step in the computer aided diagnosis frameworks. This paper presents an efficient method for automatic detection of the optic disc’s center and estimating its boundary. The center and initial diameter of optic disc are estimated by employing an ANN classifier. The ANN classifier employs visual features of vessels and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJEHMC

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2010