Ribonucleotide reductase, a possible agent in deoxyribonucleotide pool asymmetries induced by hypoxia.

نویسندگان

  • K Chimploy
  • M L Tassotto
  • C K Mathews
چکیده

While investigating the basis for marked natural asymmetries in deoxyribonucleoside triphosphate (dNTP) pools in mammalian cells, we observed that culturing V79 hamster lung cells in a 2% oxygen atmosphere causes 2-3-fold expansions of the dATP, dGTP, and dTTP pools, whereas dCTP declines by a comparable amount. Others have made similar observations and have proposed that, because O(2) is required for formation of the catalytically essential oxygen-bridged iron center in ribonucleotide reductase, dCTP depletion at low oxygen tension results from direct or indirect effects upon ribonucleotide reductase. We have tested the hypothesis that oxygen limitation affects ribonucleotide specificity using recombinant mouse ribonucleotide reductase and an assay that permits simultaneous monitoring of the reduction of all four nucleotide substrates. Preincubation and assay of the enzyme in an anaerobic chamber caused only partial activity loss. Accordingly, we treated the enzyme with hydroxyurea, followed by removal of the hydroxyurea and exposure to atmospheres of varying oxygen content. The activity was totally depleted by hydroxyurea treatment and nearly fully regained by exposure to air. By the criterion of activities regained at different oxygen tensions, we found CDP reduction not to be specifically sensitive to oxygen depletion; however, GDP reduction was specifically sensitive. The basis for the differential response to reactivation by O(2) is not known, but it evidently does not involve varying rates of reactivation of different allosteric forms of the enzyme or altered response to allosteric effectors at reduced oxygen tension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ribonucleotide Reductase Requires Subunit Switching in Hypoxia to Maintain DNA Replication

Cells exposed to hypoxia experience replication stress but do not accumulate DNA damage, suggesting sustained DNA replication. Ribonucleotide reductase (RNR) is the only enzyme capable of de novo synthesis of deoxyribonucleotide triphosphates (dNTPs). However, oxygen is an essential cofactor for mammalian RNR (RRM1/RRM2 and RRM1/RRM2B), leading us to question the source of dNTPs in hypoxia. Her...

متن کامل

Buffering of deoxyribonucleotide pool homeostasis by threonine metabolism.

Synergistically interacting gene mutations reveal buffering relationships that provide growth homeostasis through their compensation of one another. This analysis in Saccharomyces cerevisiae revealed genetic modules involved in tricarboxylic acid cycle regulation (RTG1, RTG2, RTG3), threonine biosynthesis (HOM3, HOM2, HOM6, THR1, THR4), amino acid permease trafficking (LST4, LST7), and threonin...

متن کامل

Glutathione-dependent Synthesis of Deoxyribonucleotides

This reaction in vitro requires the combined function of three pure Escherichia coli proteins, namely the Bl and B2 subunits of ribonucleotide reductase and glutaredoxin. The stoichiometry was demonstrated by determinations of the products r3H]dCDP and GSSG. The standard assay couples oxidation of NADPH to the reduction of GSSG by glutathione reductase. The apparent K,,, value of glutaredoxin w...

متن کامل

Autophagy induction causes a synthetic lethal sensitization to ribonucleotide reductase inhibition in breast cancer cells

Macroautophagy can promote cellular survival or death depending on the cellular context and its extent. We hypothesized that autophagy induction would synergize with a therapeutic agent targeting the autophagic cargo. To test this hypothesis, we treated breast cancer MDA-MB-231 cells with tamoxifen (TMX), which induces autophagy through an estrogen receptor-independent pathway. Induction of aut...

متن کامل

Trypanothione-dependent synthesis of deoxyribonucleotides by Trypanosoma brucei ribonucleotide reductase.

Trypanosoma brucei, the causative agent of African sleeping sickness, synthesizes deoxyribonucleotides via a classical eukaryotic class I ribonucleotide reductase. The unique thiol metabolism of trypanosomatids in which the nearly ubiquitous glutathione reductase is replaced by a trypanothione reductase prompted us to study the nature of thiols providing reducing equivalents for the parasite sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 275 50  شماره 

صفحات  -

تاریخ انتشار 2000