Existence of Self-accelerating Fronts for a Non-local Reaction-diffusion Equations

نویسندگان

  • N. BERESTYCKI
  • C. MOUHOT
  • G. RAOUL
چکیده

We describe the accelerated propagation wave arising from a non-local reaction-diffusion equation. This equation originates from an ecological problem, where accelerated biological invasions have been documented. The analysis is based on the comparison of this model with a related local equation, and on the analysis of the dynamics of the solutions of this second model thanks to probabilistic methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pullback D-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains

At present paper, we establish the existence of pullback $mathcal{D}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $L^2(mathbb{R}^n)times L^2(mathbb{R}^n)$. In order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{D}$-absorbing set, is pullback $widehat{D}_0$-asymptotically compact.

متن کامل

Transition fronts and stretching phenomena for a general class of reaction-dispersion equations

We consider a general form of reaction-dispersion equations with non-local dispersal and local reaction. Under some general conditions, we prove the non-existence of transition fronts, as well as some stretching properties at large time for the solutions of the Cauchy problem. These conditions are satisfied in particular when the reaction is monostable and when the dispersal operator is either ...

متن کامل

Transition Fronts in Inhomogeneous Fisher-kpp Reaction-diffusion Equations

We use a new method in the study of Fisher-KPP reaction-diffusion equations to prove existence of transition fronts for inhomogeneous KPP-type non-linearities in one spatial dimension. We also obtain new estimates on entire solutions of some KPP reactiondiffusion equations in several spatial dimensions. Our method is based on the construction of suband super-solutions to the non-linear PDE from...

متن کامل

Traveling waves for delayed non-local diffusion equations with crossing-monostability

This paper is concerned with the traveling waves for a class of delayed non-local diffusion equations with crossing-monostability. Based on constructing two associated auxiliary delayed non-local diffusion equations with quasi-monotonicity and a profile set in a suitable Banach space using the traveling wave fronts of the auxiliary equations, the existence of traveling waves is proved by Schaud...

متن کامل

Generalized Traveling Waves in Disordered Media: Existence, Uniqueness, and Stability

We prove existence, uniqueness, and stability of transition fronts (generalized traveling waves) for reaction-diffusion equations in cylindrical domains with general inhomogeneous ignition reactions. We also show uniform convergence of solutions with exponentially decaying initial data to time translates of the front. In the case of stationary ergodic reactions the fronts are proved to propagat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015