Self-focusing in the complex Ginzburg-Landau limit of the critical nonlinear Schrödinger equation

نویسندگان

  • Gadi FIBICH
  • Doron LEVY
  • Gadi Fibich
  • Doron Levy
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Inviscid Limits of the Complex Ginzburg–Landau Equation

In the inviscid limit the generalized complex Ginzburg–Landau equation reduces to the nonlinear Schrödinger equation. This limit is proved rigorously with H 1 data in the whole space for the Cauchy problem and in the torus with periodic boundary conditions. The results are valid for nonlinearities with an arbitrary growth exponent in the defocusing case and with a subcritical or critical growth...

متن کامل

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

Self-focusing in the Complex Ginzburg-landau Limit of the Critical Nonlinear Schrr Odinger Equation

We analyze self-focusing and singularity formation in the complex Ginzburg-Landau equation (CGL) in the regime where it is close to the critical nonlinear Schrr odinger equation. Using modulation theory Fibich and Papanicolaou, Phys. Lett. A 239:167{173, 1998], we derive a reduced system of ordinary diierential equations that describes self-focusing in CGL. Analysis of the reduced system shows ...

متن کامل

Multibump, Blow-Up, Self-Similar Solutions of the Complex Ginzburg-Landau Equation

In this article we construct, both asymptotically and numerically, multi-bump, blowup, self-similar solutions to the complex Ginzburg-Landau equation in the limit of small dispersion. Through a careful asymptotic analysis, involving a balance of both algebraic and exponential terms, we determine the parameter range over which these solutions may exist. Most intriguingly, we determine a branch o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998